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Ordinary differential equations (ODEs)

These are equations of the form

F (x , y , y ′, y ′′, y ′′′, . . .) = 0 (1)

where:

y = y(x) is an (unknown) function of the independent
variable x .

y is a solution of (1) provided the equation holds for all x (in
the domain specified).

The highest derivative occurring in (1) is called the order of
the equation.
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Some familiar ODEs

You’ve probably seen the following examples in Calculus II.

1. The solutions of the ODE y ′ = ky are y = Cekx , for an
arbitrary constant C .

2. The solutions of the ODE y ′′ − y = 0 are y = C1e
t + C2e

−t ,
for arbitrary constants C1 and C2.

3. The solutions of the ODE y ′′ + y = et are
y = C1 cos t + C2 sin t +

1
2
et , for arbitrary constants C1 and

C2.

You may want to go back and familiarize yourself with just how
these solutions are found.
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The definition of a Partial Differential Equation (PDE)

PDEs are the multivariable analogues of ODEs. As such, they
involve partial derivatives of an unspecified function.

Specifically, a Partial Differential Equation (PDE) has the form

F (x1, x2, . . . , xn, u, ux1 , ux2 , . . . , uxn , . . . . . . . . .︸ ︷︷ ︸

higher order partial derivatives of u

) = 0 (2)

where:

u = u(x1, x2, . . . , xn) is an (unknown) function of the
independent variables x1, x2, . . . , xn.

u is a solution of (2) provided the equation holds for all
x1, x2, . . . , xn (in the domain specified).
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Remarks:

Regarding the general PDE

F (x1, x2, . . . , xn, u, ux1 , ux2, . . . , uxn , . . . . . . . . .︸ ︷︷ ︸

higher order partial derivatives of u

) = 0. (3)

1. Recall that ux = ∂u
∂x

, uxy = ∂2u
∂x ∂y

, etc. We will use these
notations interchangeably.

2. Although every PDE can be put in the form (3), this is not
always necessary.

3. When n ≤ 4, we usually use more familiar independent
variables, e.g. x , y , z , t.

4. The order of the PDE (3) is the highest (partial) derivative
that explicitly occurs in the equation.
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Examples

1. The function u(x , y) = x2 + y2 solves the (first order) PDE
xux + yuy = 2u.

2. The function u(x , y) = ex−y solves the (first order) PDE
∂u
∂x

+ ∂u
∂y

= 0.

3. The function u(x , y) = x2 − y2 solves the (second order) PDE
uxx + uyy = 0.

4. The function u(x , y) = (sin x)(ey + e−y ) also solves
uxx + uyy = 0.

5. The function u(x , y , z) = xyz solves the (third order) PDE
uxyz = 1.
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More remarks

1. As with ODEs, checking that a given function solves a PDE is
straightforward.

2. The hard part is finding the solutions to a given PDE.

Solution spaces tend to be infinite dimensional. It’s not usually
possible to write down every solution.

There are no known techniques that will solve all PDEs.
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More remarks

3. However, there are some very powerful techniques that are
available for certain classes of PDEs:

Method of characteristics

Separation of variables, principle of superposition and Fourier
series

Sturm-Liouville theory

4. One can also approximate solutions via numerical methods.

Often necessary for extremely complicated problems.

Usually studied in other courses, e.g. Heat Transfer.
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Physical phenomena

Many physical phenomena can be effectively modeled via PDEs.

Before we can state them, recall that

∇ =
∂

∂x
i+

∂

∂y
j+ · · ·

is the gradient operator and

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+ · · ·

is the Laplacian.
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Examples

1. The wave equation: If u(x, t) measures the displacement of
an ideal elastic membrane from its equilibrium position, then
u satisfies the (second order) PDE

∂2u

∂t2
= c2∆u.

2. The heat equation: If u(x, t) gives the temperature in a
perfectly thermally conductive medium, then u satisfies the
(second order) PDE

∂u

∂t
= c2∆u.
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Examples

3. The transport equation: If u(x, t) is the concentration of a
contaminant flowing though a fluid moving with velocity v,
then u satisfies the (first order) PDE

∂u

∂t
+ v · ∇u = 0.

4. The Laplace equation: If u(x) is the steady state
temperature in a perfectly thermally conductive medium, then
u satisfies the (second order) PDE

∆u = 0.
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Examples

5. The (1-D) KdV equation: If u(x , t) is the vertical
displacement of a flowing shallow fluid, then u satisfies the
(third order) PDE

∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3
= 0.

6. The Schrödinger equation: If u(x, t) is the wave-function of
a quantum particle with mass µ, subject to a potential V (x),
then u satisfies the (second order) PDE

i~
∂u

∂t
= −

~
2

2µ
∆u + V (x)u.
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The 1-D transport equation

The set up:

Consider a fluid flowing with velocity v though a capillary (of
unbounded length) with cross-sectional area A.

We introduce a “contaminant” to the fluid, and let u(x , t)
denote its concentration at position x and time t.

A

x x
1 2

v
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At a fixed time t, the total amount of contaminant between
positions x1 and x2 is

T1(x1, x2, t) =

∫ x2

x1

u(x , t) · Adx . (4)

Similarly, at a fixed position x , the total amount of
contaminant that flows through from time t1 to t2 is

T2(t1, t2, x) =

∫ t2

t1

u(x , t) · A · v dt. (5)
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We now “compute the same quantity in two different ways.”

According to (4), the change in the amount of contaminant in the
interval [x1, x2] from time t1 to t2 is

T1(x1, x2, t2)− T1(x1, x2, t1) = A

∫ x2

x1

u(x , t2)− u(x , t1) dx

= A

∫ x2

x1

∫ t2

t1

ut(x , t) dt dx , (6)

where we have used the Fundamental Theorem of Calculus in the
final line.
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By the same token, (5) tells us the same quantity is also given by

T2(t1, t2, x1)− T2(t1, t2, x2) = Av

∫ t2

t1

u(x1, t)− u(x2, t) dt

= Av

∫ t2

t1

∫ x1

x2

ux(x , t) dx dt

= −Av

∫ x2

x1

∫ t2

t1

ux(x , t) dt dx (7)

where we have used Fubini’s theorem to reverse the order of
integration (assuming the partial derivatives of the function u(x , t)
are sufficiently smooth).
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Since we have simply computed the same quantity in two different
ways, (6) and (7) are, in fact, the same:

A

∫ x2

x1

∫ t2

t1

ut(x , t) dt dx = −Av

∫ x2

x1

∫ t2

t1

ux(x , t) dt dx .

Moving everything to one side of the equation yields

A

∫ x2

x1

∫ t2

t1

ut(x , t) + vux(x , t) dt dx = 0.
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The result

Since A > 0 and x1, x2, t1, t2 are arbitrary, this can only occur
provided

ut(x , t) + vux(x , t) = 0

for all (x , t).

Or, equivalently,
∂u

∂t
+ v

∂u

∂x
= 0.

This is the one-dimensional transport equation.
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Now what?

Can we even produce a single solution to the transport
equation?

Yes: u(x , t) = x − vt works.

Can we possibly find every solution? If so, by what means?

Yes: u(x , t) = f (x − vt), where f is arbitrary.

We’ll answer both of these next time!
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