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Introduction
The heat equation

Goal: Model heat (thermal energy) flow in a one-dimensional
object (thin rod).

Set up: Place rod along x-axis, and let
u(x,t) = temperature in rod at position x, time t.

Under ideal conditions (e.g. perfect insulation, no external heat
sources, uniform rod material), one can show the temperature
must satisfy

ou C2@ the one-dimensional
ot Ox?’ heat equation

The constant ¢ is called the thermal diffusivity of the rod.
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Initial and Boundary Conditions

We now assume the rod has finite length L and lies along the
interval [0, L]. To completely determine u we must also specify:

Initial conditions: The initial temperature profile
u(x,0) = f(x) for 0 < x < L.

Boundary conditions: Specific behavior at xp € {0, L}:
1. Constant temperature: u(xp,t) = T for t > 0.

2. Insulated end: wuy(xp,t) =0 for t > 0.

3. Radiating end: uy(xo, t) = Au(xo, t) for t > 0.
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Solving the Heat Equation

Case 1: homogeneous Dirichlet boundary conditions

We now apply separation of variables to the heat problem

Ur = C Uy (0<x<L, t>0),
u(0,t) =u(L,t)=0 (t>0),
u(x,0) = f(x) (0<x<L).
We seek separated solutions of the form u(x, t) = X(x)T(t). |
this case
= XT' I 2 X" _ T _
UXX:X//T}:> XT—CXT:>7—C27T—

Together with the boundary conditions we obtain the system
X" — kX =0, X(0)=X(L)=0,
T' — c2kT = 0.
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Already know: up to constant multiples, the only solutions to the
BVP in X are

nmy 2
i - ()
Hn L
X = X, = sin (upx) = sin (mrTx) , neN.
Therefore T must satisfy

T — kT =T + (—

T'=-XT = T=T,=bye
We thus have the normal modes of the heat equation:

up(x,t) = Xp(x) Th(t) = bne*)‘%tsin(,unx)7 neN.
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Superposition and initial condition

Applying the principle of superposition gives the general solution

o0

u(x, t) = Z un(x,t) = Z bne 1t sin(jnx).
n=1 n=1

If we now impose our initial condition we find that

f(x) = u(x,0) = Zb S|n(mTX)

which is the sine series expansion of f(x). Hence
2 L
b, = L/o f(x)sin (nLLX) dx.
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RENES

@ As before, if the sine series of f(x) is already known, solution
can be built by simply including exponential factors.

@ One can show that this is the only solution to the heat
equation with the given initial condition.

@ Because of the decaying exponential factors:

* The normal modes tend to zero (exponentially) as t — co.
« Overall, u(x,t) — 0 (exponentially) uniformly in x as t — oc.

* As c increases, u(x,t) — 0 more rapidly.

This agrees with intuition.
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Solve the heat problem

Ut = 3y (0<x<2 t>0),
u(0,t) =u(2,t) =0 (t >0),
u(x,0) =50 (0<x<2).

We have ¢ = /3, L =2 and, by exercise 2.3.1 (with p=L =2)

o0

200 1 . [ (2k+ 1)mx
f(x):50:7r22k+lsm< 5 >
k=0
2k +1 2k +1
Since Apki1 = ( Z_ ) = \/§( 2+ )ﬂ, we obtain
200 = 1 _ 2200 . [ (2k + 1)mx
u(x, t):722k+1e 3Rkt /4 i <2>
k=0
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Solving the Heat Equation

Case 2a: steady state solutions

Definition: We say that u(x, t) is a steady state solution if uy =0
(i.e. u is time-independent).

If u(x,t) = u(x) is a steady state solution to the heat equation
then

=0 = ux=u=0 = ux=0 = u=Ax+B.

Steady state solutions can help us deal with inhomogeneous
Dirichlet boundary conditions. Note that

u(0,t) = T; B=T —
u(L,t) =T, AL+B=T,
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Solving the Heat Equation

Case 2b: inhomogeneous Dirichlet boundary conditions

Now consider the heat problem

U = CPUyy (0<x<L, t>0),
U(O7 t) = Tl, U([_, t) = T2 (t > 0)7
u(x,0) = f(x) (0<x<L).

Step 1: Let u; denote the steady state solution from above:

- T
U1:<2LI>X+T1.

Step 2: Let up = u — u3.

Remark: By superposition, u; still solves the heat equation.
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The boundary and initial conditions satisfied by u» are

w(0,t) = u(0,t) —u1(0) = Ty — T1 =0,
UQ(L, t):U( ,t)—ul(L): T — TQZO,
u(x,0) = f(x) — ui(x).

Step 3: Solve the heat equation with homogeneous Dirichlet
boundary conditions and initial conditions above. This yields 5.

Step 4: Assemble u(x,t) = ui(x) + ua(x, t).
Remark: According to our earlier work, lim w(x,t) = 0.
t—o00

e We call up(x,t) the transient portion of the solution.

e We have u(x,t) — u1(x) as t — oo, i.e. the solution tends to
the steady state.
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Solve the heat problem.

U = 3y (0<x<2, t>0),
u(0,t) =100, wu(2,t)=0 (t >0),
u(x,0) =50 (0 < x<2).

We have ¢ = /3, L =2, T; = 100, T, = 0 and f(x) = 50.
The steady state solution is

0 —100
u1:< > >x+100:100—50x.

The corresponding homogeneous problem for w5 is thus

U = 3Uyx (0<x<2, t>D0),
u(0,t) =u(2,t) =0 (t>0),
u(x,0) =50 — (100 — 50x) =50(x — 1) (0 < x<2).
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According to exercise 2.3.7 (with p = L = 2), the sine series for

50(x — 1) is
100 X1 . <2k7rx>
k=

2k
i.e. only even modes occur. Since Ay = ¢ 1 T_ V3km,
—100 ¢~ 1 3202,
up(x,t) = - Z 2 sin (kmx) .
k=1
Hence
100 _3k2a2
u(x,t) = u1(x)+u2(x, t) = 100—50x—— Z Z€ sin (kmx) .
7r
k=1

Daileda 1-D Heat Equation



Neumann conditions
©0000000

Solving the Heat Equation

Case 3: homogeneous Neumann boundary conditions

Let's now consider the heat problem

Up = Pl (0<x<L,0<t),
u(0,t) = ux(L, t) =0 (0 < 1),
u(x,0) = f(x) (0<x <L),

in which we assume the ends of the rod are insulated.

As before, assuming u(x, t) = X(x) T(t) yields the system
X" — kX =0, X'(0)=X'(L) =0,
T — kT =0.

Note that the boundary conditions on X are not the same as in the
Dirichlet condition case.
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Solving for X

Case 1: k = ;1> > 0. We need to solve X" — 1?X = 0. The
characteristic equation is

rP—p?=0 = r=+yu,

which gives the general solution X = cie®™ + cpe™X. The
boundary conditions tell us that

0=X'(0) = pcy — pcz, 0= X'(L) = pcrett — pepe ™,

or in matrix form

(e 2 (2)=(5)

Since the determinant is pu?(e*t — e7#L) £ 0, we must have
c1=¢c =0,and so X = 0.
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Case 2: k = 0. We need to solve X" = 0. Integrating twice gives
X = c1X + C.

The boundary conditions give 0 = X’(0) = X’(L) = ¢1. Taking
¢ = 1 we get the solution

X=X =1.

Case 3: k = —u? < 0. We need to solve X” 4 12X = 0. The
characteristic equation is

P+u?=0 = r==ip,

which gives the general solution X = ¢y cos(ux) + ¢ sin(ux).
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The boundary conditions yield
0=X'(0)= —pucy1sin0+ pcpcos0=puc;, = c =0,

0=X'(L) = — pcysin(ul) + pcy cos(pl) = — pcy sin(ul).

In order to have X # 0, this shows that we need

sin(pl) =0 = pl=nm = u:un:n—w (neZ).

L

Taking ¢; = 1 we obtain
X = X, = cos(pnx) (n € N).
Remarks:

@ We only need n > 0, since cosine is an even function.

@ When n =0 we get Xo = cos0 = 1, which agrees with the
k = 0 result.
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Normal modes and superposition

As before, for k = —p2, we obtain T = T,, = a,e Mt

We therefore have the normal modes

Un(X, 1) = Xn(x) Ta(t) = ane Y cos(uunx) (n € Np),
where p, = nm/L and \, = cpp,.
The principle of superposition now gives the general solution

oo o0
u(x,t) = up + Z up = ap + Z ane Mt cos(jinx)

n=1 n=1

to the heat equation with (homogeneous) Neumann boundary
conditions.
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Initial conditions

If we now impose our initial condition we find that

nmx
)

f(x) = u(x,0) = ag + Za,,cos T
n=1

which is simply the 2L-periodic cosine expansion of f(x). Hence

1 L 2 L
30:/ f(x) dx, a,,:/ f(x)cosmr—xdx, (neN).
Remarks:

@ As before, if the cosine series of f(x) is already known, u(x, t)
can be built by simply including exponential factors.

@ Because of the exponential factors, tlim u(x, t) = ag, which is
—00

the average initial temperature.
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Solve the following heat problem:
1
Ut:ZUXX’ 0<x<1,0<t,
ux(0,t) = ux(1,t) =0, 0<t,
u(x,0) = 100x(1 — x), 0<x<1.

We have ¢ =1/2, L =1 and f(x) = 100x(1 — x). Therefore

1
ap = / 100x(1 — x) dx = %
0

—200(1 + (~1)")
n2m2

n>1.

Y

1
ap = 2/ 100x(1 — x) cos nmx dx =
0
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Since A\, = cnm/L = n7r/2, plugging everything into the general
solution we get

[e. 9]

50 200 14 (-1)"
u(x,t) = 32 E Wf”zﬁ%ﬂl COS NTX.
n=1

As in the case of Dirichlet boundary conditions, the exponential
terms decay rapidly with t. We therefore have

lim wu(x,t) = %

t—o0 3
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Deriving the heat equation

(Ideal) Assumptions:

@ Rod is perfectly insulated with negligible thickness, i.e. heat
only moves horizontally.

@ No external heat sources or sinks.

@ Rod material is uniform, i.e. has constant specific heat, s, and
(linear) mass density, p.

Recall that

amount of heat required to raise one unit
S =
of mass by one unit of temperature.
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Consider a small segment of the rod at position x of length Ax.

The thermal energy in this segment at time t is
E(x,x + Ax, t) =~ u(x, t)spAx.

Fourier's law of heat conduction states that the (rightward) heat
flux at any point is
_KOUX(X7 t)7

where Kj is the thermal conductivity of the rod material.

Remark: Fourier's law quantifies the notion that thermal energy
moves from hot to cold.
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Appealing to the law of conservation of energy,

9 (u(x, t)spAx) ~= —Koux(x, t) + Koux(x + Ax, t),

ot y
heat flux through heat flux in hea’F flux in
segment at left end at right end

or
ur(x, t) ~ Ko ux(x + Ax, 1) — ux(x, t).
sp Ax

Letting Ax — 0 improves the approximation and leads to the
one-dimensional heat equation
ur = C2Ux><7

2 _ Ko

where ¢ s called the thermal diffusivity.
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