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Solving the Heat Equation
Case 4: inhomogeneous Neumann boundary conditions

Continuing our previous study, let’s now consider the heat problem

ut = c2uxx (0 < x < L , 0 < t),

ux(0, t) = −F1, ux(L, t) = −F2 (0 < t),

u(x , 0) = f (x) (0 < x < L).

This models the temperature in a wire of length L with given initial
temperature distribution and constant heat flux at each end.

Remark: In fact, according to Fourier’s law of heat conduction

heat flux in at left end = K0F1,

heat flux out at right end = K0F2,

where K0 is the wire’s thermal conductivity.

Daileda Neumann and Robin conditions



Inhomog. Neumann boundary conditions A Robin boundary condition

Homogenizing the boundary conditions

As in the case of inhomogeneous Dirichlet conditions, we reduce to
a homogenous problem by subtracting a “special” function. Let

u1(x , t) =
F1 − F2

2L
x2 − F1x +

c2(F1 − F2)

L
t.

One can easily show that u1 solves the heat equation and

∂u1
∂x

(0, t) = − F1 and
∂u1
∂x

(L, t) = − F2.

By superposition, u2 = u − u1 solves the “homogenized” problem

ut = c2uxx (0 < x < L , 0 < t),

ux(0, t) = ux(L, t) = 0 (0 < t),

u(x , 0) = f (x)− u1(x , 0) (0 < x < L).
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Complete solution

We therefore have the (analogous) solution procedure:

Step 1. Construct the special function u1.

Step 2. Subtract u1 from the original problem to “homogenize” it.

Step 3. Solve the “homogenized” problem for u2.

Step 4. Construct the solution u = u1 + u2 to the original
problem.

Remarks:

According to earlier work, lim
t→∞

u2(x , t) = a0. So for large t:

u(x , t) ≈ a0 + u1(x , t).

The function u1(x , t) is not a steady state unless F1 = F2.
Why? What does this mean physically?
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Example

Solve the following heat problem:

ut =
1

4
uxx , 0 < x < 1 , 0 < t,

ux(0, t) = −5, ux(1, t) = −2, 0 < t,

u(x , 0) = 0, 0 < x < 1.

Since c2 = 1/4, F1 = 5 and F2 = 2, the “homogenizing” function
is

u1(x , t) =
3

2
x2 − 5x +

3

4
t.

Subtracting this from u yields a problem with homogeneous
boundary conditions and initial condition

u(x , 0) = 0− u1(x , 0) = − 3

2
x2 + 5x .
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The solution of the “homogenized” problem is (HW)

u2(x , t) = 2 +
1

π2

∞∑
n=1

4(−1)n − 10

n2
e−n2π2t/4 cos(nπx),

so that the solution of the original problem is

u(x , t) = u1(x , t) + u2(x , t)

=
3

2
x2 − 5x +

3

4
t + 2 +

1

π2

∞∑
n=1

4(−1)n − 10

n2
e−n2π2t/4 cos(nπx).

Remark: As we mentioned above, this shows that for large t

u(x , t) ≈ 3

2
x2 − 5x +

3

4
t + 2.
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Solving the Heat Equation
Case 5: mixed (Dirichlet and Robin) homogeneous boundary conditions

As a final case study, we now will solve the heat problem

ut = c2uxx (0 < x < L, 0 < t),

u(0, t) = 0 (0 < t),

ux(L, t) = −κu(L, t) (0 < t), (1)

u(x , 0) = f (x) (0 < x < L).

Remarks:

The condition (1) is linear and homogeneous:

κu(L, t) + ux(L, t) = 0

Recall that this is called a Robin condition.

We take κ > 0. This means that the heat flux at the right
end is proportional to the current temperature there.
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Separation of variables

As before, the assumption that u(x , t) = X (x)T (t) leads to the
ODEs

X ′′ − kX = 0, T ′ − c2kT = 0,

and the boundary conditions imply

X (0) = 0, X ′(L) = −κX (L).

Case 1: k = 0. As usual, solving X ′′ = 0 gives X = c1x + c2.
The boundary conditions become

0 = X (0) = c2, c1 = X ′(L) = −κX (L) = −κ(c1L+ c2)

⇒ c1(1 + κL) = 0 ⇒ c1 = 0.

Hence, X ≡ 0 in this case.
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Case 2: k = µ2 > 0. Again we have X ′′ − µ2X = 0 and

X = c1e
µx + c2e

−µx .

The boundary conditions become

0 = c1 + c2, µ(c1e
µL − c2e

−µL) = −κ(c1e
µL + c2e

−µL),

or in matrix form(
1 1

(κ+ µ)eµL (κ− µ)e−µL

)(
c1
c2

)
=

(
0
0

)
.

The determinant is

(κ−µ)e−µL−(κ+µ)eµL = −
(
κ(eµL − e−µL) + µ(eµL + e−µL)

)
< 0,

so that c1 = c2 = 0 and X ≡ 0.
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Case 3: k = −µ2 < 0. From X ′′ + µ2X = 0 we find

X = c1 cos(µx) + c2 sin(µx)

and from the boundary conditions we have

0 = c1, µ(−c1 sin(µL) + c2 cos(µL)) = −κ(c1 cos(µL) + c2 sin(µL))

⇒ c2 (µ cos(µL) + κ sin(µL)) = 0.

So that X ̸≡ 0, we must have

µ cos(µL) + κ sin(µL) = 0 ⇒ tan(µL) = −µ

κ
.

This equation has an infinite sequence of positive solutions

0 < µ1 < µ2 < µ3 < · · ·

and we obtain X = Xn = sin(µnx) for n ∈ N.
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The solutions of tan(µL) = −µ/κ

The figure below shows the curves y = tan(µL) (in red) and
y = −µ/κ (in blue).

The µ-coordinates of their intersections (in pink) are the values µ1,
µ2, µ3, . . .
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Remarks: From the diagram we see that:

For each n, (2n − 1)π/2L < µn < nπ/L.

As n → ∞, µn → (2n − 1)π/2L.

Smaller values of κ and L tend to accelerate this convergence.

Normal modes: As in the earlier situations, for each n ∈ N we
have the corresponding

T = Tn = cne
−λ2

nt , λn = cµn

which gives the normal mode

un(x , t) = Xn(x)Tn(t) = cne
−λ2

nt sin(µnx).
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Superposition

Superposition of normal modes gives the general solution

u(x , t) =
∞∑
n=1

un(x , t) =
∞∑
n=1

cne
−λ2

nt sin(µnx).

Imposing the initial condition gives us

f (x) = u(x , 0) =
∞∑
n=1

cn sin(µnx).

This is a generalized Fourier sine series for f (x). It is different
from the ordinary sine series for f (x) since

µn is not a multiple of π/L.
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Generalized Fourier coefficients

To compute the generalized Fourier coefficients cn we will use:

Theorem

The functions

X1(x) = sin(µ1x),X2(x) = sin(µ2x),X3(x) = sin(µ3x), . . .

form a complete orthogonal set on [0, L].

Complete means that all “sufficiently nice” functions can be
represented via generalized Fourier series.

Recall that the inner product of f (x) and g(x) on [0, L] is

⟨f , g⟩ =
∫ L

0
f (x)g(x) dx .
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“Extracting” the generalized Fourier coefficients

If

f (x) =
∞∑
n=1

cn sin(µnx) =
∞∑
n=1

cnXn(x),

the “usual” argument using the orthogonality of {X1,X2,X3, . . .}
on [0, L] yields

cn =
⟨f ,Xn⟩
⟨Xn,Xn⟩

=

∫ L

0
f (x) sin(µnx) dx∫ L

0
sin2(µnx) dx

=
2κ

κL+ cos2(µnL)

∫ L

0
f (x) sin(µnx) dx ,

the final step being left as an exercise.
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Conclusion

Theorem

The solution to the heat problem with boundary and initial
conditions

u(0, t) = 0, ux(L, t) = −κu(L, t) (0 < t),

u(x , 0) = f (x) (0 < x < L)

is given by u(x , t) =
∞∑
n=1

cne
−λ2

nt sin(µnx), where µn is the nth

positive solution to tan(µL) =
−µ

κ
, λn = cµn, and

cn =

∫ L
0 f (x) sin(µnx) dx∫ L

0 sin2(µnx) dx
=

2κ

κL+ cos2(µnL)

∫ L

0
f (x) sin(µnx) dx .
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Remarks:

For any given f (x) these integrals can be computed explicitly
in terms of µn.

The values of µn, however, must typically be found via
numerical methods.

Example

Solve the following heat problem:

ut =
1

25
uxx (0 < x < 3, 0 < t),

u(0, t) = 0, ux(3, t) = −1

2
u(3, t) (0 < t),

u(x , 0) = 100
(
1− x

3

)
(0 < x < 3).

We have c = 1/5, L = 3, κ = 1/2 and f (x) = 100(1− x/3).
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The Fourier coefficients are given by

cn =
1

3/2 + cos2(3µn)

∫ 3

0
100

(
1− x

3

)
sin(µnx) dx

=

(
1

3/2 + cos2(3µn)

) (
100(3µn − sin(3µn))

3µ2
n

)
=

200(3µn − sin(3µn))

3µ2
n (3 + 2 cos2(3µn))

.

We therefore have

u(x , t) =
∞∑
n=1

200(3µn − sin(3µn))

3µ2
n (3 + 2 cos2(3µn))

e−µ2
nt/25 sin(µnx),

where µn is the nth positive solution to tan(3µ) = −2µ.
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Remarks:

In order to use this solution for numerical approximation or
visualization, we must compute the values µn.

This can be done numerically in Maple, using the fsolve
command. Specifically, µn can be computed via the input

fsolve(tan(m∗L)=-m/k,m=(2∗n-1)∗Pi/(2∗L)..n∗Pi/L);
where L and k have been assigned the values of L and κ,
respectively.

These values can be computed and stored in an Array

structure, or one can define µn as a function using the ->
operator.
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Here are approximations to the first 5 values of µn and cn in the
preceding example.

n µn cn
1 0.7249 47.0449
2 1.6679 45.1413
3 2.6795 21.3586
4 3.7098 19.3403
5 4.7474 12.9674

Therefore

u(x , t) = 47.0449e−0.0210t sin(0.7249x) + 45.1413e−0.1113t sin(1.6679x)

+ 21.3586e−0.2872t sin(2.6795x) + 19.3403e−0.5505t sin(3.7098x)

+ 12.9674e−0.9015t sin(4.7474x) + · · ·
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