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Solving the Heat Equation

Case 4: inhomogeneous Neumann boundary conditions

Continuing our previous study, let's now consider the heat problem

U = Uy (0<x<L,0<t),
u(0,t) = —F1, ux(L,t) =—F (0 < t),
u(x,0) = f(x) (0<x < L).

This models the temperature in a wire of length L with given initial
temperature distribution and constant heat flux at each end.

Remark: In fact, according to Fourier's law of heat conduction

heat flux in at left end = KyF,
heat flux out at right end = KypFo,

where Kj is the wire's thermal conductivity.
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Homogenizing the boundary conditions

As in the case of inhomogeneous Dirichlet conditions, we reduce to
a homogenous problem by subtracting a “special” function. Let
C2(F1 — F2)

Fr—F ,
— F, — 7t
L X 1X + [ t

One can easily show that u; solves the heat equation and

ouq . ou
E(O, t)— —Fl and

ur(x,t) =

(L, t) = —F,.

X

By superposition, uy = u — ujg solves the “homogenized” problem

Ur = Pl 0<x<L,0<t),
ux(0,t) = ux(L,t) =0 (0<),
u(x,0) = f(x) — u1(x,0) (0 <x < L).
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Complete solution

We therefore have the (analogous) solution procedure:

Step 1. Construct the special function uy.

Step 2. Subtract u; from the original problem to “homogenize” it.
Step 3. Solve the “homogenized” problem for us.

Step 4. Construct the solution v = u; + us to the original
problem.

Remarks:

@ According to earlier work, lim wx(x,t) = ag. So for large t:

li
t—o00
u(x,t) = ap + ui(x, t).

@ The function uy(x, t) is not a steady state unless F; = F».
Why? What does this mean physically?
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Solve the following heat problem:
1
ut:ZuXX, O<x<1,0<t,
ux(0,t) = =5, wux(1,t) = -2, 0<t,
u(x,0) =0, 0<x<L.

Since ¢2 = 1/4, F1 =5 and F, = 2, the "homogenizing” function
is

3 3
ui(x, t) = §x2 —5x + 2t

Subtracting this from u yields a problem with homogeneous
boundary conditions and initial condition

u(x,0) =0—ui(x,0) = — §X2 + 5x.
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The solution of the “homogenized” problem is (HW)

1 oo
ua(x, t) +— Z e’"2”2t/4 cos(nmx),

so that the solution of the original problem is

u(x, t) = ui(x, t) + ua(x, t)

3
§X —5x + 7t+2+ Zl e‘”zﬁzt/“cos(mrx).

Remark: As we mentioned above, this shows that for large t

3 3
u(x,t) =~ §x2 —5X+Zt+2.
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Solving the Heat Equation

Case 5: mixed (Dirichlet and Robin) homogeneous boundary conditions

As a final case study, we now will solve the heat problem

Up = Uy (0<x<L 0<t),
u(0,t) =0 (0 <t),
ux(L,t) = —ku(L, t) (0<), (1)
u(x,0) = f(x) (0<x<L).
Remarks:

@ The condition (1) is linear and homogeneous:
ku(L,t) + ux(L,t) =0

Recall that this is called a Robin condition.
o We take k > 0. This means that the heat flux at the right
end is proportional to the current temperature there.
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Separation of variables

As before, the assumption that u(x, t) = X(x) T(t) leads to the
ODEs
X"—kX =0, T —c?kT =0,

and the boundary conditions imply
X(0) =0, X'(L)=—-rX(L).

Case 1: kK = 0. As usual, solving X" = 0 gives X = c1x + .
The boundary conditions become

0= X(O) = Co, = X/(L) = —IQX(L) = —H(ClL + C2)
= a(l+kL)=0 = ¢ =0.

Hence, X = 0 in this case.

[BETILLEY Neumann and Robin conditions



Case 2: k = ;? > 0. Again we have X" — ;?X =0 and
X = c e’ + e X,
The boundary conditions become
0=c + o, u(cle“L — cze_“L) = —n(cle“L + C2e_“L),

or in matrix form

(mlmew (n—;)e“><2>:<g>'

The determinant is
(ﬁ—u)ef“L—(m—M)e“L = — </<;(e“L — e_“L) + ,u(e“L + e_“L)> <0,

sothat c; = =0and X = 0.
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Case 3: k= —pu? < 0. From X" 4+ 12X = 0 we find
X = ¢1 cos(px) + casin(jux)
and from the boundary conditions we have

0=ci, p(—csin(ul)+ cocos(ul)) = —r(cicos(ul) + cosin(pl))
= o (pcos(pul) + ksin(pul)) = 0.

So that X # 0, we must have
pweos(ul) + ksin(ul) =0 = tan(ul) = —%.
This equation has an infinite sequence of positive solutions
O<pa<pa<pz<--

and we obtain X = X, = sin(unx) for n € N.
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The solutions of tan(ul) = —pu/k

The figure below shows the curves y = tan(uL) (in red) and
y = —u/k (in blue).

VRYEVAVAVE

i /L 3m/2L

The p-coordinates of their intersections (in pink) are the values p1,
,11’21 )U/3v e
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Remarks: From the diagram we see that:
e For each n, (2n— )7 /2L < p, < nm/L.

@ As n— oo, up — (2n — 1)mw/2L.
@ Smaller values of k and L tend to accelerate this convergence.

Normal modes: As in the earlier situations, for each n € N we
have the corresponding

T =Tn=cpe ™, A\p= clin
which gives the normal mode

un(x, t) = Xn(x) Th(t) = Che it sin(pnx).
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Superposition

Superposition of normal modes gives the general solution

u(x,t) = Z un(x Z che 0t sin (penx).

n=1

Imposing the initial condition gives us

f(x) = u(x,0) = chsm(,u,,,x

This is a generalized Fourier sine series for f(x). It is different
from the ordinary sine series for f(x) since

n is not a multiple of /L.
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Generalized Fourier coefficients

To compute the generalized Fourier coefficients c, we will use:

The functions

Xi1(x) = sin(u1x), Xa(x) = sin(u2x), X3(x) = sin(u3x), ...

form a complete orthogonal set on [0, L].

@ Complete means that all “sufficiently nice” functions can be
represented via generalized Fourier series.

@ Recall that the inner product of f(x) and g(x) on [0, L] is

L
(Fg) = /0 F(x)g(x) db.
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“Extracting” the generalized Fourier coefficients

= Zc,, sin(pnpx) = cnXn(x),

the "usual” argument using the orthogonality of {X1, X2, X3,...}

on [0, L] yields
/ f(x)sin(unx) dx

/ sin?(pnx) dx
0

Ch =
<XmX >

_%/Lf( ) sin(nx) d
kL +cos?(unl) Jo %) SIMHnX) G

the final step being left as an exercise.
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Conclusion

The solution to the heat problem with boundary and initial

conditions
u(0,t) =0, ux(L,t) =—ru(L,t) (0 <),
u(x,0) = f(x) (0<x<L)

is given by u(x, t) Z cpe Aot sin (pnx), where p, is the nth

positive solution to tan(uL) = _—M, An = Clin, and
K

fo )sin(unx) dx 2K L e O
= - 5 [ £00sinGun .

foL sin2(pnx) dx kL + cos?
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Remarks:

e For any given f(x) these integrals can be computed explicitly
in terms of pp.

@ The values of u,, however, must typically be found via
numerical methods.

Solve the following heat problem:

1
Up = o U (0<x<3, 0<t),
1
u(0,t) =0, ux(3,t) = —Eu(3, t) (0<t),
X
u(x,0) = 100 (1 - g) (0 < x < 3).

We have c =1/5, L =3, Kk =1/2 and f(x) = 100(1 — x/3).
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The Fourier coefficients are given by

1 3 X
)= 100 (1 — 2 sin(unx) d
¢ 3/2—|—cos2(3,u,,)/0 ( 3)5'”(“ x) dx

_ 1 100(341 — sin(31tn))
g%éﬁ(%g)))( i)

302 (3 +2c0s?(3pn))

We therefore have

o0

200(3pn —sin(31n))  _,2¢/05 .
t — Mn/5 n
0= 232G 2con ) )

where p, is the nth positive solution to tan(3u) = —2pu.
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Remarks:

@ In order to use this solution for numerical approximation or
visualization, we must compute the values p,.

@ This can be done numerically in Maple, using the fsolve
command. Specifically, 1, can be computed via the input

fsolve(tan(m«L)=-m/k,m=(2*n-1) *Pi/ (2*L) . .n*Pi/L) ;

where L and k have been assigned the values of L and x,
respectively.

@ These values can be computed and stored in an Array
structure, or one can define u, as a function using the ->
operator.
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Here are approximations to the first 5 values of u, and ¢, in the
preceding example.

Kn Cn
0.7249 | 47.0449
1.6679 | 45.1413
2.6795 | 21.3586
3.7098 | 19.3403
4.7474 | 12.9674

1B W N RS

Therefore

u(x, t) = 47.0449e 790210 5in(0.7249x) + 45.1413e 21113 5jn(1.6679x)
+ 21.3586e0-28721 5in(2.6795x) + 19.3403e~%-5°%% 5in(3.7098x)
+12.9674e %9015 5in(4.7474x) + - --
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