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Physical motivation

Goal: Model heat flow in a two-dimensional object (thin plate).

Set up: Represent the plate by a region in the xy -plane and let

u(x , y , t) =
{
temperature of plate at position (x , y) and
time t.

For a fixed t, the height of the surface z = u(x , y , t) gives the
temperature of the plate at time t and position (x , y).

Under ideal assumptions (e.g. uniform density, uniform specific
heat, perfect insulation along faces, no internal heat sources etc.)
one can show that u satisfies the two dimensional heat equation

ut = c2∆u = c2(uxx + uyy )
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Rectangular plates and boundary conditions

For now we assume:

The plate is rectangular, represented by R = [0, a]× [0, b].
y

x

b

a

The plate is imparted with some initial temperature:

u(x , y , 0) = f (x , y), (x , y) ∈ R.

The edges of the plate are held at zero degrees:

u(0, y , t) = u(a, y , t) = 0, 0 ≤ y ≤ b, t > 0,

u(x , 0, t) = u(x , b, t) = 0, 0 ≤ x ≤ a, t > 0.
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Separation of variables

We seek nontrivial solutions of the form

u(x , y , t) = X (x)Y (y)T (t).

Plugging this into ut = c2(uxx + uyy ) we get

XYT ′ = c2
(
X ′′YT + XY ′′T

)
⇒ T ′

c2T
=

X ′′

X
+

Y ′′

Y
.

Because the two sides are functions of different independent
variables, they must be constant:

T ′

c2T
= A =

X ′′

X
+

Y ′′

Y
⇒


T ′ − c2AT = 0,

X ′′

X
= −Y ′′

Y
+ A.
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Since the two sides again involve unrelated variables, both are
constant:

X ′′

X
= B = −Y ′′

Y
+ A.

Setting C = A− B, these equations can be rewritten as

X ′′ − BX = 0, Y ′′ − CY = 0.

The first boundary condition is

0 = u(0, y , t) = X (0)Y (y)T (t).

Canceling Y and T yields X (0) = 0. Likewise, we obtain

X (a) = 0, Y (0) = Y (b) = 0.

There are no boundary conditions on T .
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We have already solved the two boundary value problems for X
and Y . The nontrivial solutions are

X = Xm(x) = sin(µmx), µm =
mπ

a
, m ∈ N,

Y = Yn(y) = sin(νny), νn =
nπ

b
, n ∈ N,

with separation constants B = −µ2
m and C = −ν2n .

Since T ′ − c2AT = 0, and A = B + C = −
(
µ2
m + ν2n

)
< 0,

T = Tmn(t) = T = Tmn(t) = Amne
−λ2

mnt ,

where

λmn = c
√
µ2
m + ν2n = cπ

√
m2

a2
+

n2

b2
.
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Superposition

Assembling these results, we find that for any pair m, n ≥ 1 we
have the normal mode

umn(x , y , t) = Xm(x)Yn(y)Tmn(t) = Amn sin(µmx) sin(νny) e
−λ2

mnt .

The principle of superposition gives the general solution

u(x , y , t) =
∞∑

m=1

∞∑
n=1

Amn sin(µmx) sin(νny) e
−λ2

mnt .

The initial condition requires that

f (x , y) = u(x , y , 0) =
∞∑
n=1

∞∑
m=1

Amn sin
(mπ

a
x
)
sin
(nπ

b
y
)
,

which is a so-called double Fourier series for f (x , y).
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Representability
Which functions are given by double Fourier series?

The following result partially answers this first question.

Theorem

If f (x , y) is a C 2 function on the rectangle [0, a]× [0, b], then

f (x , y) =
∞∑
n=1

∞∑
m=1

Bmn sin
(mπ

a
x
)
sin
(nπ

b
y
)
,

for appropriate Bmn.

To say that f (x , y) is a C 2 function means that f as well as
its first and second order partial derivatives are all continuous.

While not as general as the Fourier representation theorem,
this result is sufficient for our applications.
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Orthogonality (again!)
How can we compute the coefficients in a double Fourier series?

The following result helps us answer this second question.

Theorem

The functions

Zmn(x , y) = sin
(mπ

a
x
)
sin
(nπ

b
y
)
, m, n ∈ N

are pairwise orthogonal relative to the inner product

⟨f , g⟩ =
∫ a

0

∫ b

0
f (x , y)g(x , y) dy dx .

This is easily verified using the orthogonality of the functions
sin(nπx/p) on the interval [0, p].
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Using the usual argument, it follows that if

f (x , y) =
∞∑
n=1

∞∑
m=1

Bmn sin
(mπ

a
x
)
sin
(nπ

b
y
)

︸ ︷︷ ︸
Zmn

,

then

Bmn =
⟨f ,Zmn⟩

⟨Zmn,Zmn⟩
=

∫ a

0

∫ b

0
f (x , y)Zmn(x , y) dy dx∫ a

0

∫ b

0
Zmn(x , y)

2 dy dx

=
4

ab

∫ a

0

∫ b

0
f (x , y) sin

(mπ

a
x
)
sin
(nπ

b
y
)
dy dx .

So, we can finally write down the complete solution to our original
problem.
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Conclusion

Theorem

If f (x , y) is a “sufficiently nice” function on [0, a]× [0, b], then the
solution to the heat equation with homogeneous Dirichlet
boundary conditions and initial condition f (x , y) is

u(x , y , t) =
∞∑

m=1

∞∑
n=1

Amn sin(µmx) sin(νny) e
−λ2

mnt ,

where µm =
mπ

a
, νn =

nπ

b
, λmn = c

√
µ2
m + ν2n , and

Amn =
4

ab

∫ a

0

∫ b

0
f (x , y) sin(µmx) sin(νny) dy dx .
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Example

A 2× 2 square plate with c = 1/3 is heated in such a way that the
temperature in the lower half is 50, while the temperature in the
upper half is 0. After that, it is insulated laterally, and the
temperature at its edges is held at 0. Find an expression that gives
the temperature in the plate for t > 0.

We must solve the heat problem above with a = b = 2 and

f (x , y) =

{
50 if y ≤ 1,

0 if y > 1.

The coefficients in the solution are

Amn =
4

2 · 2

∫ 2

0

∫ 2

0
f (x , y) sin

(mπ

2
x
)
sin
(nπ

2
y
)
dy dx

= 50

∫ 2

0
sin
(mπ

2
x
)
dx

∫ 1

0
sin
(nπ

2
y
)
dy
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= 50

(
2(1 + (−1)m+1)

πm

) (
2(1− cos nπ

2 )

πn

)
=

200

π2

(1 + (−1)m+1)(1− cos nπ
2 )

mn
.

Since λmn =
π

3

√
m2

4
+

n2

4
=

π

6

√
m2 + n2, the solution is

u(x , y , t) =
200

π2

∞∑
m=1

∞∑
n=1

(
(1 + (−1)m+1)(1− cos nπ

2 )

mn
sin
(mπ

2
x
)

× sin
(nπ

2
y
)
e−π2(m2+n2)t/36

)
.
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Inhomogeneous boundary conditions
Steady state solutions and Laplace’s equation

2-D heat problems with inhomogeneous Dirichlet boundary
conditions can be solved by the “homogenizing” procedure used in
the 1-D case:

1. Find and subtract the steady state (ut ≡ 0);

2. Solve the resulting homogeneous problem;

3. Add the steady state to the result of Step 2.

We will focus only on finding the steady state part of the solution.
Setting ut = 0 in the 2-D heat equation gives

∆u = uxx + uyy = 0 (Laplace’s equation),

solutions of which are called harmonic functions.
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Dirichlet problems

Definition: The Dirichlet problem on a region R ⊆ R2 is the
boundary value problem

∆u = 0 inside R,

u(x , y) = f (x , y) on ∂R.

Δu=0

u x,y( ) = f x,y( )

When the region is a rectangle R = [0, a]× [0, b], the boundary
conditions will be given on each edge separately as:

u(x , 0) = f1(x), u(x , b) = f2(x), 0 < x < a,

u(0, y) = g1(y), u(a, y) = g2(y), 0 < y < b.
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Solving the Dirichlet problem on a rectangle
‘Homogenization and superposition

Strategy: Reduce to four simpler problems and use superposition.

u
(0

,y
)=

 g
 (

y
)

u(x,0)=f (x)

u
(a

,y
)=

g
 (y

)

u(x,b)=f (x)

2

1

2

1

Δu= 0

(  )*

Δu= 0

u
(0

,y
)=

 0

u(x,0)=f (x)

u
(a

,y
)=

0

u(x,b)=0

1

(A)

u
(0

,y
)=

0

u(x,0)=0

u
(a

,y
)=

0

u(x,b)=f (x)2

Δu= 0

(B)

=
⊕

u
(0

,y
)=

g
 (

y
)

u(x,0)=0

u
(a

,y
)=

0

u(x,b)=0

1

Δu= 0

(C)

u
(0

,y
)=

 0

u(x,0)=0

u
(a

,y
)=

g
 (y

)

u(x,b)=0

2

Δu= 0

(D)
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Remarks:

If uA, uB , uC and uD solve the Dirichlet problems (A), (B),
(C) and (D), then the solution to (∗) is

u = uA + uB + uC + uD .

Note that the boundary conditions in (A) - (D) are all
homogeneous, with the exception of a single edge.

Problems with inhomogeneous Neumann or Robin boundary
conditions (or combinations thereof) can be reduced in a
similar manner.
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Solution of the Dirichlet problem on a rectangle
Case B

Goal: Solve the boundary value problem (B):

∆u = 0, 0 < x < a, 0 < y < b,

u(x , 0) = 0, u(x , b) = f2(x), 0 < x < a,

u(0, y) = u(a, y) = 0, 0 < y < b.

Setting u(x , y) = X (x)Y (y) leads to

X ′′ + kX = 0, Y ′′ − kY = 0,

X (0) = X (a) = 0, Y (0) = 0.

We know the nontrivial solutions for X are given by

X (x) = Xn(x) = sin(µnx), µn =
nπ

a
, k = µ2

n (n ∈ N).
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Interlude
The hyperbolic trigonometric functions

The hyperbolic cosine and sine functions are

cosh y =
ey + e−y

2
, sinh y =

ey − e−y

2
.

They satisfy the following identities:

cosh2 y − sinh2 y = 1,

d

dy
cosh y = sinh y ,

d

dy
sinh y = cosh y .

One can show that the general solution to the ODE Y ′′ − µ2Y = 0
can (also) be written as

Y = A cosh(µy) + B sinh(µy).

Daileda The 2-D heat equation
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Using µ = µn and Y (0) = 0, we find

Y (y) = Yn(y) = An cosh(µny) + Bn sinh(µny)

0 = Yn(0) = An cosh 0 + Bn sinh 0 = An.

This yields the separated solutions

un(x , y) = Xn(x)Yn(y) = Bn sin(µnx) sinh(µny),

and superposition gives the general solution

u(x , y) =
∞∑
n=1

Bn sin(µnx) sinh(µny).

Finally, the top edge boundary condition requires that

f2(x) = u(x , b) =
∞∑
n=1

Bn sinh (µnb) sin (µnx) .
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Conclusion

Appealing to the formulae for sine series coefficients, we can now
summarize our findings.

Theorem

If f2(x) is piecewise smooth, the solution to the Dirichlet problem

∆u = 0, 0 < x < a, 0 < y < b,

u(x , 0) = 0, u(x , b) = f2(x), 0 < x < a,

u(0, y) = u(a, y) = 0, 0 < y < b.

is

u(x , y) =
∞∑
n=1

Bn sin(µnx) sinh(µny),

where µn =
nπ

a
and Bn =

2

a sinh(µnb)

∫ a

0
f2(x) sin(µnx) dx .

Daileda The 2-D heat equation



Homog. Dirichlet BCs Separation of variables Inhomog. Dirichlet BCs Homogenizing Complete solution

Remark: If we know the sine series expansion for f2(x) on [0, a],
then we can use the relationship

Bn =
1

sinh(µnb)
(nth sine coefficient of f2) .

Example

Solve the Dirichlet problem on the square [0, 1]× [0, 1], subject to
the boundary conditions

u(x , 0) = 0, u(x , 1) = f2(x), 0 < x < 1,

u(0, y) = u(1, y) = 0, 0 < y < 1.

where

f2(x) =

{
75x if 0 ≤ x ≤ 2

3 ,

150(1− x) if 2
3 < x ≤ 1.
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We have a = b = 1. The graph of f2(x) is:

According to exercise 2.4.17 (with p = 1, a = 2/3 and h = 50),
the sine series for f2 is:

f2(x) =
450

π2

∞∑
n=1

sin
(
2nπ
3

)
n2

sin(nπx).
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Thus,

Bn =
1

sinh(nπ)

(
450

π2

sin
(
2nπ
3

)
n2

)
=

450

π2

sin
(
2nπ
3

)
n2 sinh(nπ)

,

and

u(x , y) =
450

π2

∞∑
n=1

sin
(
2nπ
3

)
n2 sinh(nπ)

sin(nπx) sinh(nπy).

00

11

1010

2020

3030

0.80.8

4040

0.60.6

yy
0.40.4 110.80.80.20.2 0.60.6

xx
0.40.40.20.200
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Solution of the Dirichlet problem on a rectangle
Complete solution

Recall:

u
(0

,y
)=

 g
 (

y
)

u(x,0)=f (x)

u
(a

,y
)=

g
 (y

)

u(x,b)=f (x)

2

1

2

1

Δu= 0

(  )*

Δu= 0

u
(0

,y
)=

 0

u(x,0)=f (x)

u
(a

,y
)=

0

u(x,b)=0

1

(A)

u
(0

,y
)=

0

u(x,0)=0

u
(a

,y
)=

0

u(x,b)=f (x)2

Δu= 0

(B)

=
⊕

u
(0

,y
)=

g
 (

y
)

u(x,0)=0

u
(a

,y
)=

0

u(x,b)=0

1

Δu= 0

(C)

u
(0

,y
)=

 0

u(x,0)=0

u
(a

,y
)=

g
 (y

)

u(x,b)=0

2

Δu= 0

(D)
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Solution of the Dirichlet problem on a rectangle
Cases A and C

Separation of variables shows that the solution to (A) is

uA(x , y) =
∞∑
n=1

An sin
(nπx

a

)
sinh

(
nπ(b − y)

a

)
,

where

An =
2

a sinh
(
nπb
a

) ∫ a

0
f1(x) sin

(nπx
a

)
dx .

Likewise, the solution to (C) is

uC (x , y) =
∞∑
n=1

Cn sinh

(
nπ(a− x)

b

)
sin
(nπy

b

)
,

with

Cn =
2

b sinh
(
nπa
b

) ∫ b

0
g1(y) sin

(nπy
b

)
dy .
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Solution of the Dirichlet problem on a rectangle
Case D

And the solution to (D) is

uD(x , y) =
∞∑
n=1

Dn sinh
(nπx

b

)
sin
(nπy

b

)
,

where

Dn =
2

b sinh
(
nπa
b

) ∫ b

0
g2(y) sin

(nπy
b

)
dy .

Remark: The coefficients in each case are just multiples of the
Fourier sine coefficients of the nonzero boundary condition, e.g.

Dn =
1

sinh
(
nπa
b

) (nth sine coefficient of g2 on [0, b]) .
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Example

Solve the Dirichlet problem on [0, 1]× [0, 2] with the following
boundary conditions.

∇ u = 0
2

u=2

u=0

u
=

(2
-y

) 
/22

We have a = 1, b = 2 and

f1(x) = 2, f2(x) = 0, g1(y) =
(2− y)2

2
, g2(y) = 2− y .
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It follows that Bn = 0 for all n, and the remaining coefficients we
need are

An =
2

1 · sinh
(
nπ2
1

) ∫ 1

0
2 sin

(nπx
1

)
dx =

4(1 + (−1)n+1)

nπ sinh (2nπ)
,

Cn =
2

2 sinh
(
nπ1
2

) ∫ 2

0

(2− y)2

2
sin
(nπy

2

)
dy =

4(π2n2 − 2 + 2(−1)n)

n3π3 sinh
(
nπ
2

) ,

Dn =
2

2 sinh
(
nπ1
2

) ∫ 2

0
(2− y) sin

(nπy
2

)
dy =

4

nπ sinh
(
nπ
2

) .
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The complete solution is thus

u(x , y) =uA(x , y) + uC (x , y) + uD(x , y)

=
∞∑
n=1

4(1 + (−1)n+1)

nπ sinh(2nπ)
sin(nπx) sinh(nπ(2− y))

+
∞∑
n=1

4(n2π2 − 2 + 2(−1)n)

n3π3 sinh
(
nπ
2

) sinh

(
nπ(1− x)

2

)
sin
(nπy

2

)
+

∞∑
n=1

4

nπ sinh
(
nπ
2

) sinh(nπx
2

)
sin
(nπy

2

)
.
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=
⊕
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