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Polar coordinates

To solve boundary value problems on circular regions, it is
convenient to switch from rectangular (x,y) to polar (r, ) spatial
coordinates:

x = rcos#f,
Lo X .
y =rsinf,
¢y 2 2_ 2
~, 0 XS+ y =r-.

This requires us to express the rectangular Laplacian
Au = Uy + uyy

in terms of derivatives with respect to r and 6.
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The chain rule

For any function f(r, ), we have the familiar tree diagram and
chain rule formulae:

of _ofor ofon
Ox  Ordx 00 0x
f of _ofor o oo
/\ dy  ordy 000y
r 6 or
X 'y x y fo = frrc + fobx

fy = frry + faby
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First take f = u to obtain
Uy = Urly + u99x = Uxx = Uplxx + (Ur)xrx + U09xx + (UG)XQX-
Applying the chain rule with f = u, and then with f = ug yields

Uxx = Urlxx + (Urrrx + Urﬁex) rx + UgBxx + (UGer + U069x) Ox

= Uphoc + Upr g + 2upprxOx + Upbxx + Upgl2.
An entirely similar computation using y instead of x also gives
Uyy = Urlyy + u,,rf +2u.9r, 0, + ugly, + u999§.
If we add these expressions and collect like terms we get
Au=up (e + ryy) + up (F2+ rf) + 2urp (rbx + ry0y)

+ tg (Ox + Oyy) + ugg (0% +67) .
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Differentiate x> + y? = r? with respect to x and then y:

X r—xr, r2—x? y2
2X=21ry = Ix=— = Iy= > = — = =3,
r r r r
2_ 2 2
y r—yr, rc—y X
2y =2rr, = r, == = r, = = = —.
y y y = vy 2 3 r3

Now differentiate tand = 2 with respect to x and then y:
X

2
cos- 6 2 2
BTN AL & AT )

1
2
sec 00, = X

[BETILLE Polar coordinates



Changing to polar coordinates
0000080

Together these yield

v +x2 1,

rxx+ryy:r73:;, rX—l—r}%: 2 =1.

0 0. _ 2xy  —2xy 02 1 92 y2+x2 1

oty =t =0 Bl =T =
X X

N —"d %—0,

and we finally obtain

Au = u, (rxx + ryy) + Urr (r)g + r)%) + 2urg (rxex + ryey)
+ ug (Ox + Oyy) + ugg (05 + 63)

1 1 1
=—Ur+ Uy + —5 Upe = Urr + —u, + —5 Uy
r r r r
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_y
X2+y2

Use polar coordinates to show that the function u(x,y) =

is harmonic.

We need to show that Au = 0. In polar coordinates we have

rsin@ B sind

u(r,0) = = —
(ro)="3" ="
so that
_ sinf _ 2sinf —sind
ur = — IT’ m= T Uy = PR
and thus
1 2sinf sinf sin0
AU:U,,—{—fur+—2u60: I~ "3 ~ 3 =0
r r r r r
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The Dirichlet problem on a disk

Goal: Solve the Dirichlet problem on a disk of radius a, centered
at the origin. In polar coordinates this has the form

u=f

1 1
Au=uy+—ur+ —up =0, 0<r<a, (/
r r Au
u(a,0) = £(6), 0<0<2m. \\

Remarks:
o We will require that f is 2m-periodic.

g 1 <
o/ | ©
<

o Likewise, we require that u(r,0) is 2m-periodic in 6.
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Separation of variables

If we assume that u(r,0) = R(r)©(0) and plug into Au =0, we

get
R// Rl @//
R"© R’@ R@” =0 2 4 r—4+—=0
+ - + = r R +r R + o
R// RI el/
27 _— _— =
= r 7 +rR 5 A

This yields the pair of separated ODEs
rPR"+rR' —AR=0 and ©"+ )0 =0.
We also have the “boundary conditions”

© is 2m-periodic and R(0+) is finite.
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The Dirichlet problem on a disk
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Solving for ©

The solutions of ©” + A\@ = 0 are periodic only if

A=u?>0 = ©=acos(ub)+ bsin(ub).
In order for the period to be 27 we also need

1 =cos(0p) = cos(2mp) = 2mp=27mn = p=né€ Np.

Hence A = n? and

© = 0, = a,cos(nf) + bpsin(nd), n e Ny.
It follows that R satisfies

PR" + R — PR =0,

which is called an Euler equation.
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Interlude

Euler equations

An Euler equation is a second order ODE of the form
x2y" + axy’ + By = 0.
Its solutions are determined by the roots of its indicial equation

P’ +(a—1)p+p=0.

Case 1: If the roots are p; # pa, then the general solution is

y = ax”t + cxP2.

Case 2: If there is only one root pi, then the general solution is

y = ax”t + coxPIn x.
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Solving for R

The indicial equation of r’R” +rR' — n?R =0is
PH+A=1)p—n’=p>—n*>=0 = p==n.

This means that

R=car"+cr™" (n#0),
R=ca+clnr (n=0).

These will be finite at r = 0 only if ¢ = 0. Setting ¢c; = a~" gives

R=R, = (g) n e No.
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Separated solutions and superposition

We therefore obtain the separated solutions
r\”" :
un(r,0) = Ro(r)On(0) = (5) (an cos(nf) + bysin(nd)), ne No.
Noting that
0
up(r,0) = (g) (ap cos 0 + by sin 0) = ao,

superposition gives the general solution

u(r,0) = ap + i <§>n (ancos(nf) + by sin(nb)) .
n=1
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Boundary values and conclusion

Imposing our Dirichlet boundary conditions gives

f(0) = u(a,0) = ao + Z (ap cos(nB) + b, sin(nb)),
n=1

which is just the ordinary 27-periodic Fourier series for f!

The solution of the Dirichlet problem on the disk of radius a
centered at the origin, with boundary condition u(a,0) = f(0) is
u(r,0) =ao+ Y02, (£)" (ancos(nf) + by sin(nd)) , where

1 2w
ag = o f(0)do,
1 o 1 2w
a, = / £(0) cos(nb) db, b, = / f(0)sin(nb) d6.
™ Jo ™ Jo

v
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Find the solution to the Dirichlet problem on a disk of radius 3
with boundary values given by

N(r4+20) if F<o<0,
f(0) =< 2(r—20) if0<H<3,
0 if 2<6<3L.

Examples
©00000

We have a = 3. The graph of f is
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According to exercise 2.3.8 (with p =7, ¢ =30 and d = 7/2):

o0

15 120 1 — cos(nm/2
f(0) = 5t Z ng /2) cos(nb).
n=1

Hence, the solution to the Dirichlet problem is

o0

u(r,0) = 175 + 120 Z (i)n 1 = cos(nm/2) cos(nf).

2 3 n?
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Solve the Dirichlet problem on a disk of radius 2 with boundary
values given by () = cos? . Express your answer in cartesian
coordinates.

We have a = 2 and

l1+cos(20) 1 1
— 29 _ - — 4=
f(0) = cos” 0 = > > + > cos(26),
which is a finite 27-periodic Fourier series (i.e. ag = 1/2,
a» = 1/2, and all other coefficients are zero).
Hence
r)2 1 1 r?cos(20)

1
u(r,9)—§+<§ ECOS(QG)—E‘F 3
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Since cos(26) = cos? @ — sin? 6, we find that

r? cos(20) = r? cos® f — r’sin? 0 = x* — y?
and hence
1 rPcos(20) 1 x%2—y?
y=-+——L =+ 7
2 8 2 8
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Solve the Dirichlet problem on a disk of radius 1 if the boundary
value is 50 in the first quadrant, and zero elsewhere.

We are given a=1, f(#) =50 for 0 < 0 < w/2 and f(#) =0
otherwise. The Fourier coefficients of f are

1 [7/2 25

dp = % ; 50d6 = 7,
/2 :

I / 50 cos(n) d — 205n("™/2).

™ Jo nm

1 [7/2 1-— 2
by = / 50sin(nf) do — 20— <os(nm/2))

T 0 nm

so that

u(r,0) = 22—5—1-% r" (sln(nn7r/2) cos(nb)+ (1- coi(mr/2)) sin(nH)) .

n=1
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Remarks:

@ One can frequently use identities like (valid for |r| < 1)

o

n 0 1

yoreostof) _ 11— 2rcosh 4 12),
n 2

n:].

iw—arctan Lﬂ@

2 - = 1—rcosf )’

to convert series solutions in polar coordinates to cartesian
expressions.

@ Using the second identity, one can show that the solution in
the preceding example is

u(x )—2—5—%@ arctan [ —X— ) + arctan | ——
Y= T 1—x 1-y)/) )’
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