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The 2D wave equation
°

Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.

Set up: Assume the membrane at rest is a region of the xy-plane
and let

vertical deflection of membrane from equilib-
rium at position (x,y) and time t.

oty t) =

For a fixed t, the surface z = u(x, y, t) gives the shape of the
membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform
tension, no resistance to motion, small deflection, etc.) one can
show that v satisfies the two dimensional wave equation

e = AU = (U + Uyy).
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Rectangular membranes

We assume the membrane lies over the rectangular region
R =0, a] x [0, b] and has fixed edges.
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These facts are expressed by the boundary conditions

u(0,y,t) =u(a y,t) =0, 0<y<b t>0,
u(x,0,t) = u(x, b, t) =0, 0<x<a t>0.
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We must also specify how the membrane is initially deformed and
set into motion. This is done via the initial conditions

u(x,y,0) = f(x,y), (x,y) €R,
Ut(X,y,O):g(X,y)7 (X,y)GR.

New goal: solve the 2-D wave equation subject to the boundary
and initial conditions just given.

As usual, one can:

@ Use separation of variables to find separated solutions
satisfying the homogeneous boundary conditions; and

@ Use the principle of superposition to build up a series solution
that satisfies the initial conditions as well.
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Separation of variables

We seek nontrivial solutions of the form
u(x,y, t) = X(x)Y(y)T(t).

Plugging this into uy = c?(uxx + uyy) and separating variables (as
with the 2D heat equation) yields the separated system of ODEs
and boundary conditions:

X" —BX =0, X(0)=X(a)=0,
Y"—CY =0, Y(0)=Y(b)=0,
T"—c*AT =0.

in which A = B + C. Notice that there are no boundary conditions
on T.
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We have already solved the two boundary value problems for X
and Y. The nontrivial solutions are

X = Xm(x) = sin(pmx), fm = == me N,
Y = Yi(y) =sin(vny), Vp = n%r neN,
with separation constants B = —u2 and C = —v2.

Since T — c?AT =0,and A= B+ C = — (u?, +12) <0,

T = Tmn(t) = Bmncos(Amnt) + By, sin(Amnt),

/ m?  n?
/\mn:C ,U/?n‘f'l/%:C?T §+p

These are the characteristic frequencies of the membrane.

where
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Normal modes

Assembling our results, we find that for any pair m,n € N we have
the normal mode

umn(X, ¥, t) = Xim(x) Yn(y) Tmn(t)
= sin(mx) sin(vny) (Bmn cos(Amnt) + By Sin(Amnt))
= Amn sin(umx) sin(V,,y) COS()\mnt - ¢mn)

Remarks: Note that the normal modes:
e oscillate spatially with period 27/, = 2a/m in the
x-direction, and with period 27 /v, = 2b/n in the y-direction;
@ oscillate in time with frequency A,,/27.
Notice that A,,,/27 is not a multiple of any basic frequency. So

the general solution u(x, y, t) will be oscillatory, but not necessarily
periodic (in time).
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Superposition and initial conditions

Superposition gives the general solution

u(x,y, t) = sin(pmx) sin(vny) (Bmn cos(Amnt) + By sin(Amnt))

The initial conditions will determine the coefficients B, and B},
Setting t = 0 yields

f(x,y)=u(x,y,0 ZZ B sin <—x) sin (n;y)

n=1m=1

g(x,y) = ut(x,y,0) i i Amn B, Sin ( ;T ) sin (n;ry) .

n=1m=1

These are again double Fourier series whose coefficients are given
by double integrals.
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Conclusion

The solution to the vibrating membrane problem is given by
u(x,y, t) =

Z Z sin(pmx) sin(vny) (Bmn cos(Amnt) + B, sin(Amnt))

n=1 m=1

where pim = X, vp =I5, Apn = ¢/ p3, + 12, and

4 a rb
=25 / / f(x,y)sin(mx)sin(vny) dy dx,
0 J0O

4 a b
Bhn=—— / / g(x,y)sin(pmx) sin(vny) dy dx.
ab/\m,, o Jo

V.
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A 2 x 3 rectangular membrane has ¢ = 6. If we deform it to have
shape given by

F(x,y) = xy(2 = x)(83 - y),
keep its edges fixed, and release it at t = 0, find an expression that
gives the shape of the membrane for t > 0.

.
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We must compute the coefficients Bp,, and B};,,. Since
g(x,y) = 0 we immediately have

B, = 0.

We also have

4 [2 3
B, = 2-3/0 /0 xy(2 —x)(3 — y)sin (%x) sin <%y) dy dx
2

- i/o x(2 = x)sin (57x) dx/oay(3 —y)sin (y) dy
2 (16(1 + (—1)mt1) 54(1 + (—1)"1)
e el

3 m3m3 m3n3
576 (14 (—1)™Th) (1 + (—1)"th)
I m3n3 '
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The coefficients A, are given by

Amn = ¢\/ p3 + V3 = 67 —+— = 7/9m? + 4n2.

Assembling all of these pieces yields

6 o= = (1 (=)™ )X+ (1)) . /mr
u(X,y,t):%ZZ <( +(=1) mgsﬁ—i_( ) )S|n<2x)

n=1m=1

X sin (%y) cos (w\/ 9m? + 4n? t)) .
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Suppose in the previous example we also impose an initial velocity
given by g(x,y) = 8sin2mx. Find an expression that gives the
shape of the membrane for t > 0.

Since we have the same initial shape, B, don't change. We only
need to find B}, and add the appropriate terms to the previous
solution.

Using Amn computed above, we have

*

Bon = 5. 37“/9,”27_1_4”2/ / 8sin(27x) sin (TX) sm( 3 ) dy dx
37r\/9nlﬂﬁ sin(27x) sin (mTX> dX/3S|n <n377y) .
0

The first integral is zero unless m = 4, i.e. B}, =0 for m # 4.
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Evaluating the second integral, we have

gt 8 3(1+(—1)"1)  8(1+(—1)"t1)
7 30\/36 + n2 nm 2036 + n?2

So the velocity dependent term of the solution is
(x,y,t Z Z Bin sin (tmx) sin (vpy) sin (Amnt)

m=1 n=1
(n—ﬂy> sin (277\/ 36 + n2t> ‘

n+1

8SIn 27TX Z
= nv 36 + n2

If we let up(x,y,t) denote the solution to the first example, the
complete solution here is

U(Xaya t) = U1(X,y, t) + U2(X,y, t)-
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The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a
circular frame of radius a.

Set-up: Center the membrane at the origin in the xy-plane and let

deflection of membrane from equilibrium at
u(r,0,t) =

polar position (r,0) and time t.
Under ideal assumptions:

1 1
Uy = c2Au = c? (urr + “u+ 2u@9> , C
r r

O<r<a 0<fO<2m t>0,

u(a,0,t) =0, 0<60<2m t>0.
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Separation of variables

Setting u(r,0,t) = R(r)©(6) T(t) leads to the separated boundary
value problems

PR" + R + (A2r2 — M2) R =0, R(0+) finite, R(a)=0,
Q" + 0@ =0, © 2m-periodic,
T+ ANT =0.
We have already seen that the solutions to the © problem are
©(0) = ©m(0) = Acos(mé) + Bsin(mf), = m e Np.

So, for each m € Ny it remains to solve the ODE boundary value
problem

PR’ + R + (\r* — m*) R=0, R(0+) finite, R(a)=0.
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Solving for R

Case 1: A = 0. This is an Euler equation, and the only solution to
the BVP is R =0 (HW).

Case 2: \ > 0. The changes of variables R(r) = y(x), x = Ar
lead to

2y +xy' + (2 —mP)y =0, y(0+) finite, y(Aa) =0.

Bessel's equation of order m

Remarks.

@ The solutions to Bessel's equation have been well-studied.

@ The standard normalized independent solutions are known as
the Bessel functions of the first and second kind.
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Bessel's equation

Given p > 0, the ordinary differential equation
2y 4 xy + (x> =py =0, x>0

is known as Bessel’s equation of order p. Using the Method of
Frobenius one arrives at the series solution

Zk'r(k+p—|— )( )mp’

which is known as the Bessel function of the first kind of order p.

Here I denotes the Gamma function

M(s) = /OOO et ldt (s> 0).
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Graphs of Bessel functions of the first kind
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In Maple, the functions J,(x) can be invoked by the command

BesselJ(p,x)
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Properties of Bessel functions of the first kind

Jo(0) =1 and J,(0) =0 for p > 0.

The values of J, always lie between 1 and —1.

Jp has infinitely many positive zeros, which we denote by

0<apr <app <apz<---

Jp is oscillatory and tends to zero as x — co. More precisely,

° n"_?go lapn — atp ng1| =
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@ For 0 < p < 1, the graph of J, has a vertical tangent line at
x =0.

@ For 1 < p, the graph of J, has a horizontal tangent line at
x =0, and the graph is initially “flat.”

@ For some values of p, the Bessel functions of the first kind can
be expressed in terms of familiar functions, e.g.

2
Jija(x) = \/;sm X,
2
J5/0(x) = — <<32 - 1) sinx — icosx) :
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RENENS

@ Frobenius’ method yields a second linearly independent
solution y, of Bessel's equation.

@ Although the exact form of y» depends on the value of p, it is
not hard to argue that in any case lim |y = oo.
x—07F

e Since lim J,(x) is finite, it follows that any linearly
x—07F

independent solution Y,(x) must also satisfy
lim | Yp(x)| = oc.

x—0t

@ The standard normalization of Y}, is called the Bessel function
of the second kind. We won't explicitly need it.
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Differentiation identities

Using the series definition of J,(x), one can show that:

(P (3) = X dpa (),
’ @
o (xPUp(x)) = =x"PUpia(x).

The product rule and cancellation lead to

xJp(x) + pdp(x) = xJp-1(x),

xJp(x) = pdp(x) = —xpy1(x).
Addition and subtraction of these identities then yield

Jp1(x) = Jpra(x) = 25(x),

Jp 10+ dpia (0 = 20,
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Integration identities

Integration of the differentiation identities (1) gives
/Xp+1Jp(X) dx = xPT U, 1 (x) + C

/xp+1Jp(x) dx = —x"PJ, 1(x) + C.

o Exercises 4.2.12 and 4.3.9 give similar identities.

@ Identities such as these can be used to evaluate certain
integrals of the form

a
/ f(r)Im(Amnr)r dr,
0
which will occur frequently in later work.
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Evaluate

/ xPT2 J,(x) dx.

We integrate by parts, first taking

u=x* dv = xP1J,(x) dx

du = 4x3 dx v=xPTJ, 1 (x),

which gives

/xp+5Jp(x) dx = xPT° J,1 1(x) — 4/xp+4Jp+1(x) dx.
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Now integrate by parts again with

u=x* dv = xP*2 ), 1(x) dx

du = 2x dx v = xPT2J,15(x),

to get
/Xp+5Jp(X) dx = xPT° J, 1 1(x) — 4/Xp+4Jp+1(X) dx

= xPT 0 1(x) — 4 <x”+4Jp+2(x) — 2/xp+3Jp+2(x) dx)

= xPT2 ), 1(x) — 4xPT4 U5 0(x) + 8xPT3 U, ,3(x) + C.
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