The two dimensional wave equation

R. C. Daileda

Trinity University

Partial Differential Equations

Lecture 14

Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.
Set up: Assume the membrane at rest is a region of the $x y$-plane and let

$$
u(x, y, t)=\left\{\begin{array}{l}
\text { vertical deflection of membrane from equilib- } \\
\text { rium at position }(x, y) \text { and time } t .
\end{array}\right.
$$

For a fixed t, the surface $z=u(x, y, t)$ gives the shape of the membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform tension, no resistance to motion, small deflection, etc.) one can show that u satisfies the two dimensional wave equation

$$
u_{t t}=c^{2} \Delta u=c^{2}\left(u_{x x}+u_{y y}\right)
$$

Rectangular membranes

We assume the membrane lies over the rectangular region $R=[0, a] \times[0, b]$ and has fixed edges.

These facts are expressed by the boundary conditions

$$
\begin{array}{ll}
u(0, y, t)=u(a, y, t)=0, & 0 \leq y \leq b, t>0 \\
u(x, 0, t)=u(x, b, t)=0, & 0 \leq x \leq a, t>0
\end{array}
$$

We must also specify how the membrane is initially deformed and set into motion. This is done via the initial conditions

$$
\begin{aligned}
u(x, y, 0) & =f(x, y), & & (x, y) \in R, \\
u_{t}(x, y, 0) & =g(x, y), & & (x, y) \in R .
\end{aligned}
$$

New goal: solve the 2-D wave equation subject to the boundary and initial conditions just given.

As usual, one can:

- Use separation of variables to find separated solutions satisfying the homogeneous boundary conditions; and
- Use the principle of superposition to build up a series solution that satisfies the initial conditions as well.

Separation of variables

We seek nontrivial solutions of the form

$$
u(x, y, t)=X(x) Y(y) T(t)
$$

Plugging this into $u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)$ and separating variables (as with the 2D heat equation) yields the separated system of ODEs and boundary conditions:

$$
\begin{gathered}
X^{\prime \prime}-B X=0, \quad X(0)=X(a)=0 \\
Y^{\prime \prime}-C Y=0, \quad Y(0)=Y(b)=0 \\
T^{\prime \prime}-c^{2} A T=0
\end{gathered}
$$

in which $A=B+C$. Notice that there are no boundary conditions on T.

We have already solved the two boundary value problems for X and Y. The nontrivial solutions are

$$
\begin{array}{lrl}
X=X_{m}(x)=\sin \left(\mu_{m} x\right), & \mu_{m}=\frac{m \pi}{a}, & m \in \mathbb{N} \\
Y=Y_{n}(y)=\sin \left(\nu_{n} y\right), & \nu_{n}=\frac{n \pi}{b}, & n \in \mathbb{N}
\end{array}
$$

with separation constants $B=-\mu_{m}^{2}$ and $C=-\nu_{n}^{2}$.
Since $T^{\prime \prime}-c^{2} A T=0$, and $A=B+C=-\left(\mu_{m}^{2}+\nu_{n}^{2}\right)<0$,

$$
T=T_{m n}(t)=B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right),
$$

where

$$
\lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}=c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}} .
$$

These are the characteristic frequencies of the membrane.

Normal modes

Assembling our results, we find that for any pair $m, n \in \mathbb{N}$ we have the normal mode

$$
\begin{aligned}
u_{m n}(x, y, t) & =X_{m}(x) Y_{n}(y) T_{m n}(t) \\
& =\sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right) \\
& =A_{m n} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) \cos \left(\lambda_{m n} t-\phi_{m n}\right)
\end{aligned}
$$

Remarks: Note that the normal modes:

- oscillate spatially with period $2 \pi / \mu_{m}=2 a / m$ in the x-direction, and with period $2 \pi / \nu_{n}=2 b / n$ in the y-direction;
- oscillate in time with frequency $\lambda_{m n} / 2 \pi$.

Notice that $\lambda_{m n} / 2 \pi$ is not a multiple of any basic frequency. So the general solution $u(x, y, t)$ will be oscillatory, but not necessarily periodic (in time).

Superposition and initial conditions

Superposition gives the general solution

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right)
$$

The initial conditions will determine the coefficients $B_{m n}$ and $B_{m n}^{*}$. Setting $t=0$ yields

$$
\begin{aligned}
& f(x, y)=u(x, y, 0)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \\
& g(x, y)=u_{t}(x, y, 0)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \lambda_{m n} B_{m n}^{*} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) .
\end{aligned}
$$

These are again double Fourier series whose coefficients are given by double integrals.

Conclusion

Theorem

The solution to the vibrating membrane problem is given by $u(x, y, t)=$

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right)\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right)
$$

where $\mu_{m}=\frac{m \pi}{a}, \nu_{n}=\frac{n \pi}{b}, \lambda_{m n}=c \sqrt{\mu_{m}^{2}+\nu_{n}^{2}}$, and

$$
\begin{aligned}
& B_{m n}=\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} f(x, y) \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) d y d x \\
& B_{m n}^{*}=\frac{4}{a b \lambda_{m n}} \int_{0}^{a} \int_{0}^{b} g(x, y) \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) d y d x
\end{aligned}
$$

Example

A 2×3 rectangular membrane has $c=6$. If we deform it to have shape given by

$$
f(x, y)=x y(2-x)(3-y)
$$

keep its edges fixed, and release it at $t=0$, find an expression that gives the shape of the membrane for $t>0$.

We must compute the coefficients $B_{m n}$ and $B_{m n}^{*}$. Since $g(x, y)=0$ we immediately have

$$
B_{m n}^{*}=0
$$

We also have

$$
\begin{aligned}
B_{m n} & =\frac{4}{2 \cdot 3} \int_{0}^{2} \int_{0}^{3} x y(2-x)(3-y) \sin \left(\frac{m \pi}{2} x\right) \sin \left(\frac{n \pi}{3} y\right) d y d x \\
& =\frac{2}{3} \int_{0}^{2} x(2-x) \sin \left(\frac{m \pi}{2} x\right) d x \int_{0}^{3} y(3-y) \sin \left(\frac{n \pi}{3} y\right) d y \\
& =\frac{2}{3}\left(\frac{16\left(1+(-1)^{m+1}\right)}{\pi^{3} m^{3}}\right)\left(\frac{54\left(1+(-1)^{n+1}\right)}{\pi^{3} n^{3}}\right) \\
& =\frac{576}{\pi^{6}} \frac{\left(1+(-1)^{m+1}\right)\left(1+(-1)^{n+1}\right)}{m^{3} n^{3}}
\end{aligned}
$$

The coefficients $\lambda_{m n}$ are given by

$$
\lambda_{m n}=c \sqrt{\mu_{n}^{2}+\nu_{n}^{2}}=6 \pi \sqrt{\frac{m^{2}}{4}+\frac{n^{2}}{9}}=\pi \sqrt{9 m^{2}+4 n^{2}}
$$

Assembling all of these pieces yields

$$
\begin{aligned}
u(x, y, t)= & \frac{576}{\pi^{6}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left(\frac{\left(1+(-1)^{m+1}\right)\left(1+(-1)^{n+1}\right)}{m^{3} n^{3}} \sin \left(\frac{m \pi}{2} x\right)\right. \\
& \left.\times \sin \left(\frac{n \pi}{3} y\right) \cos \left(\pi \sqrt{9 m^{2}+4 n^{2}} t\right)\right)
\end{aligned}
$$

Example

Suppose in the previous example we also impose an initial velocity given by $g(x, y)=8 \sin 2 \pi x$. Find an expression that gives the shape of the membrane for $t>0$.

Since we have the same initial shape, $B_{m n}$ don't change. We only need to find $B_{m n}^{*}$ and add the appropriate terms to the previous solution.

Using $\lambda_{m n}$ computed above, we have

$$
\begin{aligned}
B_{m n}^{*} & =\frac{4}{2 \cdot 3 \pi \sqrt{9 m^{2}+4 n^{2}}} \int_{0}^{2} \int_{0}^{3} 8 \sin (2 \pi x) \sin \left(\frac{m \pi}{2} x\right) \sin \left(\frac{n \pi}{3} y\right) d y d x \\
& =\frac{16}{3 \pi \sqrt{9 m^{2}+4 n^{2}}} \int_{0}^{2} \sin (2 \pi x) \sin \left(\frac{m \pi}{2} x\right) d x \int_{0}^{3} \sin \left(\frac{n \pi}{3} y\right) d y
\end{aligned}
$$

The first integral is zero unless $m=4$, i.e. $B_{m n}^{*}=0$ for $m \neq 4$.

Evaluating the second integral, we have

$$
B_{4 n}^{*}=\frac{8}{3 \pi \sqrt{36+n^{2}}} \frac{3\left(1+(-1)^{n+1}\right)}{n \pi}=\frac{8\left(1+(-1)^{n+1}\right)}{\pi^{2} n \sqrt{36+n^{2}}} .
$$

So the velocity dependent term of the solution is

$$
\begin{aligned}
u_{2}(x, y, t) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n}^{*} \sin \left(\mu_{m} x\right) \sin \left(\nu_{n} y\right) \sin \left(\lambda_{m n} t\right) \\
& =\frac{8 \sin (2 \pi x)}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1+(-1)^{n+1}}{n \sqrt{36+n^{2}}} \sin \left(\frac{n \pi}{3} y\right) \sin \left(2 \pi \sqrt{36+n^{2}} t\right)
\end{aligned}
$$

If we let $u_{1}(x, y, t)$ denote the solution to the first example, the complete solution here is

$$
u(x, y, t)=u_{1}(x, y, t)+u_{2}(x, y, t)
$$

The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a circular frame of radius a.

Set-up: Center the membrane at the origin in the $x y$-plane and let

$$
u(r, \theta, t)=\left\{\begin{array}{l}
\text { deflection of membrane from equilibrium at } \\
\text { polar position }(r, \theta) \text { and time } t .
\end{array}\right.
$$

Under ideal assumptions:

$$
\begin{aligned}
& u_{t t}=c^{2} \Delta u=c^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}\right) \\
& 0<r<a, \quad 0<\theta<2 \pi, \quad t>0 \\
& u(a, \theta, t)=0, \quad 0 \leq \theta \leq 2 \pi, \quad t>0
\end{aligned}
$$

Separation of variables

Setting $u(r, \theta, t)=R(r) \Theta(\theta) T(t)$ leads to the separated boundary value problems

$$
\begin{aligned}
& r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda^{2} r^{2}-\mu^{2}\right) R=0, \quad R(0+) \text { finite, } \quad R(a)=0, \\
& \Theta^{\prime \prime}+\mu^{2} \Theta=0, \quad \Theta 2 \pi \text {-periodic, } \\
& T^{\prime \prime}+c^{2} \lambda^{2} T=0
\end{aligned}
$$

We have already seen that the solutions to the Θ problem are

$$
\Theta(\theta)=\Theta_{m}(\theta)=A \cos (m \theta)+B \sin (m \theta), \quad \mu=m \in \mathbb{N}_{0} .
$$

So, for each $m \in \mathbb{N}_{0}$ it remains to solve the ODE boundary value problem

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda^{2} r^{2}-m^{2}\right) R=0, \quad R(0+) \text { finite, } \quad R(a)=0
$$

Solving for R

Case 1: $\lambda=0$. This is an Euler equation, and the only solution to the BVP is $R \equiv 0$ (HW).

Case 2: $\lambda>0$. The changes of variables $R(r)=y(x), x=\lambda r$ lead to

$$
\underbrace{x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-m^{2}\right) y=0}_{\text {Bessel's equation of order } m}, \quad y(0+) \text { finite, } \quad y(\lambda a)=0
$$

Remarks.

- The solutions to Bessel's equation have been well-studied.
- The standard normalized independent solutions are known as the Bessel functions of the first and second kind.

Bessel's equation

Given $p \geq 0$, the ordinary differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0
$$

is known as Bessel's equation of order p. Using the Method of Frobenius one arrives at the series solution

$$
J_{p}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+p+1)}\left(\frac{x}{2}\right)^{2 k+p}
$$

which is known as the Bessel function of the first kind of order p. Here「 denotes the Gamma function

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t \quad(s>0)
$$

Graphs of Bessel functions of the first kind

In Maple, the functions $J_{p}(x)$ can be invoked by the command
BesselJ (p, x)

Properties of Bessel functions of the first kind

- $J_{0}(0)=1$ and $J_{p}(0)=0$ for $p>0$.
- The values of J_{p} always lie between 1 and -1 .
- J_{p} has infinitely many positive zeros, which we denote by

$$
0<\alpha_{p 1}<\alpha_{p 2}<\alpha_{p 3}<\cdots
$$

- J_{p} is oscillatory and tends to zero as $x \rightarrow \infty$. More precisely,

$$
J_{\rho}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{p \pi}{2}-\frac{\pi}{4}\right) .
$$

- $\lim _{n \rightarrow \infty}\left|\alpha_{p n}-\alpha_{p, n+1}\right|=\pi$.
- For $0<p<1$, the graph of J_{p} has a vertical tangent line at $x=0$.
- For $1<p$, the graph of J_{p} has a horizontal tangent line at $x=0$, and the graph is initially "flat."
- For some values of p, the Bessel functions of the first kind can be expressed in terms of familiar functions, e.g.

$$
\begin{aligned}
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \\
& J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\left(\frac{3}{x^{2}}-1\right) \sin x-\frac{3}{x} \cos x\right)
\end{aligned}
$$

Remarks

- Frobenius' method yields a second linearly independent solution y_{2} of Bessel's equation.
- Although the exact form of y_{2} depends on the value of p, it is not hard to argue that in any case $\lim _{x \rightarrow 0^{+}}\left|y_{2}\right|=\infty$.
- Since $\lim _{x \rightarrow 0^{+}} J_{p}(x)$ is finite, it follows that any linearly independent solution $Y_{p}(x)$ must also satisfy

$$
\lim _{x \rightarrow 0^{+}}\left|Y_{p}(x)\right|=\infty
$$

- The standard normalization of Y_{p} is called the Bessel function of the second kind. We won't explicitly need it.

Differentiation identities

Using the series definition of $J_{p}(x)$, one can show that:

$$
\begin{align*}
& \frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x) \\
& \frac{d}{d x}\left(x^{-p} J_{p}(x)\right)=-x^{-p} J_{p+1}(x) \tag{1}
\end{align*}
$$

The product rule and cancellation lead to

$$
\begin{aligned}
& x J_{p}^{\prime}(x)+p J_{p}(x)=x J_{p-1}(x) \\
& x J_{p}^{\prime}(x)-p J_{p}(x)=-x J_{p+1}(x)
\end{aligned}
$$

Addition and subtraction of these identities then yield

$$
\begin{aligned}
J_{p-1}(x)-J_{p+1}(x) & =2 J_{p}^{\prime}(x) \\
J_{p-1}(x)+J_{p+1}(x) & =\frac{2 p}{x} J_{p}(x)
\end{aligned}
$$

Integration identities

Integration of the differentiation identities (1) gives

$$
\begin{aligned}
\int x^{p+1} J_{p}(x) d x & =x^{p+1} J_{p+1}(x)+C \\
\int x^{-p+1} J_{p}(x) d x & =-x^{-p+1} J_{p-1}(x)+C
\end{aligned}
$$

- Exercises 4.2.12 and 4.3.9 give similar identities.
- Identities such as these can be used to evaluate certain integrals of the form

$$
\int_{0}^{a} f(r) J_{m}\left(\lambda_{m n} r\right) r d r
$$

which will occur frequently in later work.

Example

Evaluate

$$
\int x^{p+5} J_{p}(x) d x
$$

We integrate by parts, first taking

$$
\begin{aligned}
u & =x^{4} & & d v=x^{p+1} J_{p}(x) d x \\
d u & =4 x^{3} d x & & v=x^{p+1} J_{p+1}(x),
\end{aligned}
$$

which gives

$$
\int x^{p+5} J_{p}(x) d x=x^{p+5} J_{p+1}(x)-4 \int x^{p+4} J_{p+1}(x) d x
$$

Now integrate by parts again with

$$
\begin{aligned}
u & =x^{2} & & d v=x^{p+2} J_{p+1}(x) d x \\
d u & =2 x d x & & v=x^{p+2} J_{p+2}(x),
\end{aligned}
$$

to get

$$
\begin{aligned}
& \int x^{p+5} J_{p}(x) d x=x^{p+5} J_{p+1}(x)-4 \int x^{p+4} J_{p+1}(x) d x \\
& =x^{p+5} J_{p+1}(x)-4\left(x^{p+4} J_{p+2}(x)-2 \int x^{p+3} J_{p+2}(x) d x\right) \\
& =x^{p+5} J_{p+1}(x)-4 x^{p+4} J_{p+2}(x)+8 x^{p+3} J_{p+3}(x)+C
\end{aligned}
$$

