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Vibrating membranes

Goal: Model the motion of an ideal elastic membrane.

Set up: Assume the membrane at rest is a region of the xy -plane
and let

u(x , y , t) =

{
vertical deflection of membrane from equilib-
rium at position (x , y) and time t.

For a fixed t, the surface z = u(x , y , t) gives the shape of the
membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform
tension, no resistance to motion, small deflection, etc.) one can
show that u satisfies the two dimensional wave equation

utt = c2∆u = c2(uxx + uyy ).
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Rectangular membranes

We assume the membrane lies over the rectangular region
R = [0, a]× [0, b] and has fixed edges.

These facts are expressed by the boundary conditions

u(0, y , t) = u(a, y , t) = 0, 0 ≤ y ≤ b, t > 0,

u(x , 0, t) = u(x , b, t) = 0, 0 ≤ x ≤ a, t > 0.
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We must also specify how the membrane is initially deformed and
set into motion. This is done via the initial conditions

u(x , y , 0) = f (x , y), (x , y) ∈ R,

ut(x , y , 0) = g(x , y), (x , y) ∈ R.

New goal: solve the 2-D wave equation subject to the boundary
and initial conditions just given.

As usual, one can:

Use separation of variables to find separated solutions
satisfying the homogeneous boundary conditions; and

Use the principle of superposition to build up a series solution
that satisfies the initial conditions as well.
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Separation of variables

We seek nontrivial solutions of the form

u(x , y , t) = X (x)Y (y)T (t).

Plugging this into utt = c2(uxx + uyy ) and separating variables (as
with the 2D heat equation) yields the separated system of ODEs
and boundary conditions:

X ′′ − BX = 0, X (0) = X (a) = 0,

Y ′′ − CY = 0, Y (0) = Y (b) = 0,

T ′′−c2AT = 0.

in which A = B + C . Notice that there are no boundary conditions
on T .
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We have already solved the two boundary value problems for X
and Y . The nontrivial solutions are

X = Xm(x) = sin(µmx), µm =
mπ

a
, m ∈ N,

Y = Yn(y) = sin(νny), νn =
nπ

b
, n ∈ N,

with separation constants B = −µ2
m and C = −ν2n .

Since T ′′ − c2AT = 0, and A = B + C = −
(
µ2
m + ν2n

)
< 0,

T = Tmn(t) = Bmn cos(λmnt) + B∗
mn sin(λmnt),

where

λmn = c
√

µ2
m + ν2n = cπ

√
m2

a2
+

n2

b2
.

These are the characteristic frequencies of the membrane.
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Normal modes

Assembling our results, we find that for any pair m, n ∈ N we have
the normal mode

umn(x , y , t) = Xm(x)Yn(y)Tmn(t)

= sin(µmx) sin(νny) (Bmn cos(λmnt) + B∗
mn sin(λmnt))

= Amn sin(µmx) sin(νny) cos(λmnt − ϕmn)

Remarks: Note that the normal modes:

oscillate spatially with period 2π/µm = 2a/m in the
x-direction, and with period 2π/νn = 2b/n in the y -direction;

oscillate in time with frequency λmn/2π.

Notice that λmn/2π is not a multiple of any basic frequency. So
the general solution u(x , y , t) will be oscillatory, but not necessarily
periodic (in time).
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Superposition and initial conditions

Superposition gives the general solution

u(x , y , t) =
∞∑
n=1

∞∑
m=1

sin(µmx) sin(νny) (Bmn cos(λmnt) + B∗
mn sin(λmnt)) .

The initial conditions will determine the coefficients Bmn and B∗
mn.

Setting t = 0 yields

f (x , y) = u(x , y , 0) =
∞∑
n=1

∞∑
m=1

Bmn sin
(mπ

a
x
)
sin

(nπ
b
y
)
,

g(x , y) = ut(x , y , 0) =
∞∑
n=1

∞∑
m=1

λmnB
∗
mn sin

(mπ

a
x
)
sin

(nπ
b
y
)
.

These are again double Fourier series whose coefficients are given
by double integrals.
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Conclusion

Theorem

The solution to the vibrating membrane problem is given by
u(x , y , t) =

∞∑
n=1

∞∑
m=1

sin(µmx) sin(νny) (Bmn cos(λmnt) + B∗
mn sin(λmnt))

where µm = mπ
a , νn = nπ

b , λmn = c
√

µ2
m + ν2n , and

Bmn =
4

ab

∫ a

0

∫ b

0
f (x , y) sin(µmx) sin(νny) dy dx ,

B∗
mn =

4

abλmn

∫ a

0

∫ b

0
g(x , y) sin(µmx) sin(νny) dy dx .
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Example

A 2× 3 rectangular membrane has c = 6. If we deform it to have
shape given by

f (x , y) = xy(2− x)(3− y),

keep its edges fixed, and release it at t = 0, find an expression that
gives the shape of the membrane for t > 0.
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We must compute the coefficients Bmn and B∗
mn. Since

g(x , y) = 0 we immediately have

B∗
mn = 0.

We also have

Bmn =
4

2 · 3

∫ 2

0

∫ 3

0
xy(2− x)(3− y) sin

(mπ

2
x
)
sin

(nπ
3
y
)
dy dx

=
2

3

∫ 2

0
x(2− x) sin

(mπ

2
x
)
dx

∫ 3

0
y(3− y) sin

(nπ
3
y
)
dy

=
2

3

(
16(1 + (−1)m+1)

π3m3

) (
54(1 + (−1)n+1)

π3n3

)
=

576

π6

(1 + (−1)m+1)(1 + (−1)n+1)

m3n3
.

Daileda The 2-D wave equation



The 2D wave equation Rectangular Membranes Examples Circular Membranes Bessel’s equation

The coefficients λmn are given by

λmn = c
√
µ2
n + ν2n = 6π

√
m2

4
+

n2

9
= π

√
9m2 + 4n2.

Assembling all of these pieces yields

u(x , y , t) =
576

π6

∞∑
n=1

∞∑
m=1

(
(1 + (−1)m+1)(1 + (−1)n+1)

m3n3
sin

(mπ

2
x
)

× sin
(nπ

3
y
)
cos

(
π
√

9m2 + 4n2 t
))

.
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Example

Suppose in the previous example we also impose an initial velocity
given by g(x , y) = 8 sin 2πx . Find an expression that gives the
shape of the membrane for t > 0.

Since we have the same initial shape, Bmn don’t change. We only
need to find B∗

mn and add the appropriate terms to the previous
solution.

Using λmn computed above, we have

B∗
mn =

4

2 · 3π
√
9m2 + 4n2

∫ 2

0

∫ 3

0
8 sin(2πx) sin

(mπ

2
x
)
sin

(nπ
3
y
)
dy dx

=
16

3π
√
9m2 + 4n2

∫ 2

0
sin(2πx) sin

(mπ

2
x
)
dx

∫ 3

0
sin

(nπ
3
y
)
dy .

The first integral is zero unless m = 4, i.e. B∗
mn = 0 for m ̸= 4.

Daileda The 2-D wave equation



The 2D wave equation Rectangular Membranes Examples Circular Membranes Bessel’s equation

Evaluating the second integral, we have

B∗
4n =

8

3π
√
36 + n2

3(1 + (−1)n+1)

nπ
=

8(1 + (−1)n+1)

π2n
√
36 + n2

.

So the velocity dependent term of the solution is

u2(x , y , t) =
∞∑

m=1

∞∑
n=1

B∗
mn sin (µmx) sin (νny) sin (λmnt)

=
8 sin(2πx)

π2

∞∑
n=1

1 + (−1)n+1

n
√
36 + n2

sin
(nπ

3
y
)
sin

(
2π

√
36 + n2t

)
.

If we let u1(x , y , t) denote the solution to the first example, the
complete solution here is

u(x , y , t) = u1(x , y , t) + u2(x , y , t).
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The vibrating circular membrane

Goal: Model the motion of an elastic membrane stretched over a
circular frame of radius a.

Set-up: Center the membrane at the origin in the xy -plane and let

u(r , θ, t) =

{
deflection of membrane from equilibrium at
polar position (r , θ) and time t.

Under ideal assumptions:

Δu u  = c
x

y

a

tt
2

u=0

utt = c2∆u = c2
(
urr +

1

r
ur +

1

r2
uθθ

)
,

0 < r < a, 0 < θ < 2π, t > 0,

u(a, θ, t) = 0, 0 ≤ θ ≤ 2π, t > 0.

Daileda The 2-D wave equation



The 2D wave equation Rectangular Membranes Examples Circular Membranes Bessel’s equation

Separation of variables

Setting u(r , θ, t) = R(r)Θ(θ)T (t) leads to the separated boundary
value problems

r2R ′′ + rR ′ +
(
λ2r2 − µ2

)
R = 0, R(0+) finite, R(a) = 0,

Θ′′ + µ2Θ = 0, Θ 2π-periodic,

T ′′ + c2λ2T = 0.

We have already seen that the solutions to the Θ problem are

Θ(θ) = Θm(θ) = A cos (mθ) + B sin (mθ) , µ = m ∈ N0.

So, for each m ∈ N0 it remains to solve the ODE boundary value
problem

r2R ′′ + rR ′ +
(
λ2r2 −m2

)
R = 0, R(0+) finite, R(a) = 0.
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Solving for R

Case 1: λ = 0. This is an Euler equation, and the only solution to
the BVP is R ≡ 0 (HW).

Case 2: λ > 0. The changes of variables R(r) = y(x), x = λr
lead to

x2y ′′ + xy ′ + (x2 −m2)y = 0︸ ︷︷ ︸
Bessel’s equation of order m

, y(0+) finite, y(λa) = 0.

Remarks.

The solutions to Bessel’s equation have been well-studied.

The standard normalized independent solutions are known as
the Bessel functions of the first and second kind.
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Bessel’s equation

Given p ≥ 0, the ordinary differential equation

x2y ′′ + xy ′ + (x2 − p2)y = 0, x > 0

is known as Bessel’s equation of order p. Using the Method of
Frobenius one arrives at the series solution

Jp(x) =
∞∑
k=0

(−1)k

k! Γ(k + p + 1)

(x
2

)2k+p
,

which is known as the Bessel function of the first kind of order p.

Here Γ denotes the Gamma function

Γ(s) =

∫ ∞

0
e−tts−1 dt (s > 0).

Daileda The 2-D wave equation



The 2D wave equation Rectangular Membranes Examples Circular Membranes Bessel’s equation

Graphs of Bessel functions of the first kind

In Maple, the functions Jp(x) can be invoked by the command

BesselJ(p,x)
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Properties of Bessel functions of the first kind

J0(0) = 1 and Jp(0) = 0 for p > 0.

The values of Jp always lie between 1 and −1.

Jp has infinitely many positive zeros, which we denote by

0 < αp1 < αp2 < αp3 < · · ·

Jp is oscillatory and tends to zero as x → ∞. More precisely,

Jp(x) ∼
√

2

πx
cos

(
x − pπ

2
− π

4

)
.

lim
n→∞

|αpn − αp,n+1| = π .
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For 0 < p < 1, the graph of Jp has a vertical tangent line at
x = 0.

For 1 < p, the graph of Jp has a horizontal tangent line at
x = 0, and the graph is initially “flat.”

For some values of p, the Bessel functions of the first kind can
be expressed in terms of familiar functions, e.g.

J1/2(x) =

√
2

πx
sin x ,

J5/2(x) =

√
2

πx

((
3

x2
− 1

)
sin x − 3

x
cos x

)
.
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Remarks

Frobenius’ method yields a second linearly independent
solution y2 of Bessel’s equation.

Although the exact form of y2 depends on the value of p, it is
not hard to argue that in any case lim

x→0+
|y2| = ∞.

Since lim
x→0+

Jp(x) is finite, it follows that any linearly

independent solution Yp(x) must also satisfy

lim
x→0+

|Yp(x)| = ∞.

.

The standard normalization of Yp is called the Bessel function
of the second kind. We won’t explicitly need it.
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Differentiation identities

Using the series definition of Jp(x), one can show that:

d

dx
(xpJp(x)) = xpJp−1(x),

d

dx

(
x−pJp(x)

)
= −x−pJp+1(x).

(1)

The product rule and cancellation lead to

xJ ′p(x) + pJp(x) = xJp−1(x),

xJ ′p(x)− pJp(x) = −xJp+1(x).

Addition and subtraction of these identities then yield

Jp−1(x)− Jp+1(x) = 2J ′p(x),

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x).
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Integration identities

Integration of the differentiation identities (1) gives∫
xp+1Jp(x) dx = xp+1Jp+1(x) + C∫

x−p+1Jp(x) dx = −x−p+1Jp−1(x) + C .

Exercises 4.2.12 and 4.3.9 give similar identities.

Identities such as these can be used to evaluate certain
integrals of the form∫ a

0
f (r)Jm(λmnr)r dr ,

which will occur frequently in later work.
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Example

Evaluate ∫
xp+5Jp(x) dx .

We integrate by parts, first taking

u = x4 dv = xp+1Jp(x) dx

du = 4x3 dx v = xp+1Jp+1(x),

which gives∫
xp+5Jp(x) dx = xp+5Jp+1(x)− 4

∫
xp+4Jp+1(x) dx .
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Now integrate by parts again with

u = x2 dv = xp+2Jp+1(x) dx

du = 2x dx v = xp+2Jp+2(x),

to get∫
xp+5Jp(x)dx = xp+5Jp+1(x)− 4

∫
xp+4Jp+1(x) dx

= xp+5Jp+1(x)− 4

(
xp+4Jp+2(x)− 2

∫
xp+3Jp+2(x) dx

)
= xp+5Jp+1(x)− 4xp+4Jp+2(x) + 8xp+3Jp+3(x) + C .
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