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Recall
The Fourier transform

The Fourier transform of a piecewise smooth f ∈ L1(R) is

f̂ (ω) = F(f )(ω) =
1√
2π

∫ ∞

−∞
f (x)e−iωx dx ,

and f can be recovered from f̂ via the inverse Fourier transform

f (x) = F−1(f̂ )(x) =
1√
2π

∫ ∞

−∞
f̂ (ω)e iωx dω.

Remarks:

See Appendix B1 for a table of Fourier transform pairs.

The Fourier transform can help solve boundary value problems
with unbounded domains.
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Fourier transforms of two-variable functions

If u(x , t) is defined for −∞ < x < ∞, we define its Fourier
transform in x to be

û(ω, t) = F(u(x , t))(ω) =
1√
2π

∫ ∞

−∞
u(x , t)e−iωx dx .

Because the Fourier transform treats t as a constant, we have

F
(
∂nu

∂xn

)
= (iω)nF(u) = (iω)nû

and

F
(
∂nu

∂tn

)
=

1√
2π

∫ ∞

−∞

∂nu

∂tn
(x , t)e−iωx dx

=
∂n

∂tn

(
1√
2π

∫ ∞

−∞
u(x , t)e−iωx dx

)
=

∂n

∂tn
F(u) =

∂nû

∂tn
.
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Example

Solve the 1-D heat equation on an infinite rod,

ut = c2uxx , −∞ < x < ∞, t > 0,

u(x , 0) = f (x).

We take the Fourier transform (in x) on both sides to get

ût = c2(iω)2û = −c2ω2û

û(ω, 0) = f̂ (ω).

Since there is only a t derivative, we solve as though ω were a
constant:

û(ω, t) = A(ω)e−c2ω2t ⇒ f̂ (ω) = û(ω, 0) = A(ω).
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To solve for u, we invert the Fourier transform, obtaining

u(x , t) =
1√
2π

∫ ∞

−∞
û(ω, t)e iωx dω

=
1√
2π

∫ ∞

−∞
f̂ (ω)e−c2ω2te iωx dω.

Remarks.

This expresses the solution in terms of the Fourier transform
of the initial temperature distribution f (x).

We can obtain an (integral) expression for the solution
directly in terms of f by instead recognizing the presence of a
convolution, prior to Fourier inversion.
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The heat kernel

The function

gt(x) =
1

c
√
2t

e−x2/(4c2t)

is called the heat kernel. We can use earlier results to deduce that

ĝt(ω) = e−c2ω2t ,

and hence the solution above can also be written

û(ω, t) = f̂ (ω)e−c2ω2t = f̂ (ω)ĝt(ω) = f̂ ∗ gt(ω).

Applying F−1 to both sides this means that

u(x , t) = (f ∗ gt)(x) =
1√
2π

∫ ∞

−∞
f (s)gt(x − s) ds

=
1

2c
√
πt

∫ ∞

−∞
f (s)e−(x−s)2/4c2t ds.
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Example

Solve the boundary value problem

ut = tuxx , −∞ < x < ∞, t > 0,

u(x , 0) = f (x),

which models the temperature in an infinitely long rod with
variable thermal diffusivity.

Taking the Fourier transform (in x) on both sides yields

ût = t(iω)2û = −tω2û,

û(ω, 0) = f̂ (ω).

The ODE in t is separable, with solution

û(ω, t) = A(ω)e−t2ω2/2 ⇒ f̂ (ω) = û(ω, 0) = A(ω).
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As before, Fourier inversion gives

u(x , t) =
1√
2π

∫ ∞

−∞
f̂ (ω)e−t2ω2/2e iωx dω.

In comparison with the preceding example, this decays more
rapidly as t increases. This is is physically reasonable, since the
thermal diffusivity is increasing with t.

Remark: Notice that this is the solution of the previous example,
with t2/2 replacing c2t. Using the earlier remark, this means

u(x , t) =
1

t
√
2π

∫ ∞

−∞
f (s)e−(x−s)2/2t2 ds.
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Example

Solve the third order mixed derivative boundary value problem

utt = uxxt , −∞ < x < ∞, t > 0,

u(x , 0) = f (x), ut(x , 0) = g(x).

Taking the Fourier transform (in x) on both sides yields

ûtt = (iω)2ût = −ω2ût ,

û(ω, 0) = f̂ (ω), ût(ω, 0) = ĝ(ω)

Solving the ODE it t for ût gives

ût(ω, t) = A(ω)e−ω2t ⇒ û(ω, t) = −A(ω)

ω2
e−ω2t + B(ω)

= A(ω)e−ω2t + B(ω).
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Imposing the initial conditions we find that

f̂ (ω) = û(ω, 0) = A(ω) + B(ω)
ĝ(ω) = ût(ω, 0) = − ω2A(ω)

⇒
A(ω) =

−ĝ(ω)

ω2

B(ω) = f̂ (ω) +
ĝ(ω)

ω2
.

Plugging these into û and applying Fourier inversion yields

u(x , t) =
1√
2π

∫ ∞

−∞

(
−ĝ(ω)

ω2
e−ω2t + f̂ (ω) +

ĝ(ω)

ω2

)
e iωx dω

=
1√
2π

∫ ∞

−∞

(
f̂ (ω) +

ĝ(ω)

ω2
(1− e−ω2t)

)
e iωx dω

= f (x) +
1√
2π

∫ ∞

−∞

ĝ(ω)

ω2
(1− e−ω2t)e iωx dω.
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Example

Solve the boundary value problem

t2ux − ut = 0, −∞ < x < ∞, t > 0,

u(x , 0) = f (x),

and express the solution explicitly in terms of f .

Taking the Fourier transform (in x) on both sides yields

t2(iω)û − ût = 0,

û(ω, 0) = f̂ (ω).

The ODE in t is separable, with solution

û(ω, t) = A(ω)e it
3ω/3 ⇒ f̂ (ω) = û(ω, 0) = A(ω).
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Using Fourier inversion leads to

u(x , t) =
1√
2π

∫ ∞

−∞
f̂ (ω)e it

3ω/3e iωx dω

=
1√
2π

∫ ∞

−∞
f̂ (ω)e iω(x+t3/3) dω

= f

(
x +

t3

3

)
.

Remark: This particular problem is amenable to the method of
characteristics, although the Fourier transform method may seem
somewhat more straightforward.
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Example

Solve the Dirichlet problem in the upper half-plane

∇2u = uxx + uyy = 0, −∞ < x < ∞, y > 0,

u(x , 0) = f (x),

which models the steady state temperature in a semi-infinite plate.

Taking the Fourier transform (in x) on both sides yields

(iω)2û + ûyy = ûyy − ω2û = 0,

û(ω, 0) = f̂ (ω).

The ODE in y has characteristic equation

r2 − ω2 = 0 ⇒ r = ±ω ⇒ û(ω, y) = A(ω)eωy + B(ω)e−ωy .
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We now require that û(ω, y) remain bounded as y → ∞.
Consequently,

ω > 0 ⇒ A(ω) = 0
ω < 0 ⇒ B(ω) = 0

}
⇒ û(ω, y) = C (ω)e−y |ω|

⇒ f̂ (ω) = û(ω, 0) = C (ω)

Now recall that (for a > 0)

F(e−|x |) =

√
2

π

1

1 + ω2

F(g(ax)) =
1

a
ĝ
(ω
a

)
 ⇒ F(e−a|x |) =

√
2

π

a

a2 + ω2
.
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Since
F−1(f )(x) = F(f )(−x),

applying F−1 to both sides, we have

e−a|x | = F

(√
2

π

a

a2 + ω2

)
(−x)

⇒ F

(√
2

π

a

a2 + ω2

)
(x) = e−a|−x | = e−a|x |

⇒ e−y |ω| = F

(√
2

π

y

y2 + x2

)
︸ ︷︷ ︸

Py (x)

= P̂y (ω)

The function Py (x) is called the Poisson kernel.
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Therefore

û(ω, t) = f̂ (ω)e−y |ω| = f̂ (ω)P̂y (ω) = f̂ ∗ Py (ω).

Finally, we apply Fourier inversion to find that

u(x , y) = (f ∗ Py )(x)

=
1√
2π

∫ ∞

−∞
f (s)Py (x − s) ds

=
y

π

∫ ∞

−∞

f (s)

y2 + (x − s)2
ds,

which is known as the Poisson integral formula for the solution to
the Dirichlet problem on the upper half-plane.
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