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The Fourier transform
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Recall

The Fourier transform

The Fourier transform of a piecewise smooth f € L*(R) is

flw) = F(F)(w) = \/12? /_ " F()e 7 dx,

and f can be recovered from f via the inverse Fourier transform

f(x) = F 1) (x) = 7= / f(w)e™ dw.

Remarks:

@ See Appendix B1 for a table of Fourier transform pairs.

@ The Fourier transform can help solve boundary value problems
with unbounded domains.
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The Fourier transform
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Fourier transforms of two-variable functions

If u(x,t) is defined for —

00 < x < 00, we define its Fourier
transform in x to be

i, t) = Fu(x, £))(w F/ u(x, )= dy.

Because the Fourier transform treats t as a constant, we have

F(54) = @z = oy

and

on 1[0,
F <8t”> = 777[_ @(X, t)e dx

fwx o 0"
= 5 <\/ﬂ u(x, t)e dx) = atn]:(u) = S
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Heat problems on an infinite rod
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Solve the 1-D heat equation on an infinite rod,

U = CPlyy, —00 < x <00, t>0,

u(x,0) = f(x).

We take the Fourier transform (in x) on both sides to get

iw)?i = —c?w?i

<
Il
(9}
N
—

Since there is only a t derivative, we solve as though w were a
constant:

i(w, t) = Aw)e <t = f(w) = i(w,0) = Aw).
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Heat problems on an infinite rod
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To solve for u, we invert the Fourier transform, obtaining

u(x, t) e d

\/ 27r /

= —2 / F(w)e W teiwx gy,
VLT J—oco

Remarks.

@ This expresses the solution in terms of the Fourier transform
of the initial temperature distribution f(x).

@ We can obtain an (integral) expression for the solution
directly in terms of f by instead recognizing the presence of a
convolution, prior to Fourier inversion.
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Heat problems on an infinite rod
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The heat kernel

The function 1
2 2
X) = XA
&)= 5
is called the heat kernel. We can use earlier results to deduce that

—c2w?t

gi(w) =e ;

and hence the solution above can also be written

~ o~

B(w, t) = f(w)e < = F(w)g:(w) = F * ge(w).

Applying F~! to both sides this means that

u(x, t) = (f = ge)(x s)gi(x — s) ds

m/
e —(x— s)/4ctd

2 VT
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Heat problems on an infinite rod
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Solve the boundary value problem

Uy = tlyy, —00<x<o00, t>0,
u(x,0) = f(x),

which models the temperature in an infinitely long rod with
variable thermal diffusivity.

Taking the Fourier transform (in x) on both sides yields

The ODE in t is separable, with solution

0w, t) = Aw)e P2 = f(w) = i(w,0) = Aw).
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Heat problems on an infinite rod
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As before, Fourier inversion gives
1 © .
u(x, t) = — f(w)e T2 du.

In comparison with the preceding example, this decays more
rapidly as t increases. This is is physically reasonable, since the
thermal diffusivity is increasing with t.

Remark: Notice that this is the solution of the previous example,
with t2/2 replacing c?t. Using the earlier remark, this means

(x— S) /2t2 ds.

u(x,t) =

tv2m
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Other examples
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Solve the third order mixed derivative boundary value problem

Ut = Uxyt, —00 < X <00, t>0,
u(x,0) = f(x), ue(x,0) = g(x).

Taking the Fourier transform (in x) on both sides yields

Solving the ODE it t for {; gives

Or(w, t) = A(w)e_wzt = O(w,t)= —Au(z)e_wzt + B(w)

= A(w)e "t + B(w).
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Other examples
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Imposing the initial conditions we find that

" o B A(w) — _g(w)
f(w) = d(w,0) = Alw) + B(w) w?
é’(u)) = ﬁt (JJ,O) = - W2A(W) B(w) = F(w) + LL;)

Plugging these into d and applying Fourier inversion yields

—w?t 7 é’(w) iwx
f — d
e + f(w) + " > e dw

ubat) = m/(

G ert)> & du

F(w) +
(x) + L /Oo ér(i(;})(l - e_wzt)ei“’x dw.
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Other examples
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Solve the boundary value problem

tPuy —ur =0, —c0<x<o0, t>0,
u(x,0) = f(x),

and express the solution explicitly in terms of f.

Taking the Fourier transform (in x) on both sides yields

t?(iw)d —
0w, 0) =

‘H> t:>

)

The ODE in t is separable, with solution

O(w, t) = A(w)e™“? = f(w) = i(w,0) = A(w).
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[e]ele] }
Using Fourier inversion leads to
1 oo 3 .
u(x, t) = — f(w)ew/3eix dy
V21 J

t3
=f — .
<X+ 3>

Remark: This particular problem is amenable to the method of
characteristics, although the Fourier transform method may seem
somewhat more straightforward.
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The semi-infinite plate
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Solve the Dirichlet problem in the upper half-plane

V2u:uxx+uyy:0, —o00o < x <00, y>0,
u(x,0) = f(x),

which models the steady state temperature in a semi-infinite plate.
o

Taking the Fourier transform (in x) on both sides yields

The ODE in y has characteristic equation

P—w?=0 =r=4w = iwy)=Aw)e"” + Bw)e ™.
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The semi-infinite plate
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We now require that d(w,y) remain bounded as y — oo.
Consequently,

220 2 B} = o=

= f(w) = id(w,0) = C(w)

Now recall that (for a > 0)
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The semi-infinite plate
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Since
FHA)(x) = F(F)(—x),

applying F~! to both sides, we have

_alx 2 a
¢ "f<\[ra2+wz> ()
-7 <\/5a2+«9w2> (x) = e 27 = g=all
T
—vlw 2y ~

Py(x)

The function Py (x) is called the Poisson kernel.
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The semi-infinite plate
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Therefore

0w, t) = f(w)e ¥l = F(w)P,(w) = F * P, (w).

Finally, we apply Fourier inversion to find that

u(x,y) = (f * Py)(x)

_\/;/OO F(s)P, (x — s) ds
:y/mf(s)ds

Q0 7ooy2+(X_S)2

which is known as the Poisson integral formula for the solution to
the Dirichlet problem on the upper half-plane.
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