More on Fourier Series

R. C. Daileda

Trinity University

Partial Differential Equations

Lecture 7

General Fourier series

If $f(x)$ is $2 p$-periodic and piecewise smooth, then $\hat{f}(x)=f(p x / \pi)$ has period $\frac{2 p}{p / \pi}=2 \pi$, and is also piecewise smooth.

It follows that $\hat{f}(x)$ has a Fourier series:

$$
\frac{\hat{f}(x+)+\hat{f}(x-)}{2}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) .
$$

Since $f(x)=\hat{f}(\pi x / p)$, we find that f also has a Fourier series:

$$
\frac{f(x+)+f(x-)}{2}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right) .
$$

We can use Euler's formulas to find a_{n} and b_{n}. For example

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{f}(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\frac{p x}{\pi}\right) d x=\frac{1}{2 p} \int_{-p}^{p} f(t) d t
$$

where in the final equality we used the substitution $t=p x / \pi$.

In the same way one can show that for $n \geq 1$

$$
\begin{aligned}
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(t) \cos \left(\frac{n \pi t}{p}\right) d t \\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(t) \sin \left(\frac{n \pi t}{p}\right) d t
\end{aligned}
$$

Since t is simply a "dummy" variable of integration, we may replace it with x in each case.

Remarks on general Fourier series

Everything we've done with 2π-periodic Fourier series continues to hold in this case, with p replacing π :

- We can compute general Fourier coefficients by integrating over any "convenient" interval of length $2 p$.
- If p is left unspecified, then the formulae for a_{n} and b_{n} may involve p.
- If $f(x)$ is even, then $b_{n}=0$ for all n.
- If $f(x)$ is odd, then $a_{n}=0$ for all n.
- We still have the uniform convergence theorem and Wilbraham-Gibbs phenomenon.

Example

Find the Fourier series of the $2 p$-periodic function that satisfies $f(x)=2 p-x$ for $0 \leq x<2 p$.

The graph of $f(x)$:

We will use Euler's formulas over the interval $[0,2 p]$ to simplify our calculations.

We have

$$
a_{0}=\frac{1}{2 p} \int_{0}^{2 p} 2 p-x d x=\frac{1}{2 p}\left(2 p x-\left.\frac{x^{2}}{2}\right|_{0} ^{2 p}\right)=p
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{1}{p} \int_{0}^{2 p}(2 p-x) \cos \left(\frac{n \pi x}{p}\right) d x \\
& =\frac{1}{p}\left(\frac{p(2 p-x) \sin \left(\frac{n \pi x}{p}\right)}{n \pi}-\left.\frac{p^{2} \cos \left(\frac{n \pi x}{p}\right)}{n^{2} \pi^{2}}\right|_{0} ^{2 p}\right) \\
& =\frac{1}{p}\left(-\frac{p^{2} \cos (2 n \pi)}{n^{2} \pi^{2}}+\frac{p^{2}}{n^{2} \pi^{2}}\right)=0,
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{p} \int_{0}^{2 p}(2 p-x) \sin \left(\frac{n \pi x}{p}\right) d x \\
& =\frac{1}{p}\left(\frac{-p(2 p-x) \cos \left(\frac{n \pi x}{p}\right)}{n \pi}-\left.\frac{p^{2} \sin \left(\frac{n \pi x}{p}\right)}{n^{2} \pi^{2}}\right|_{0} ^{2 p}\right) \\
& =\frac{1}{p}\left(\frac{2 p^{2}}{n \pi}\right)=\frac{2 p}{n \pi} .
\end{aligned}
$$

So the Fourier series of f is

$$
p+\sum_{n=1}^{\infty} \frac{2 p}{n \pi} \sin \left(\frac{n \pi x}{p}\right)=p+\frac{2 p}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{p}\right) .
$$

Remark: This series is equal to $f(x)$ everywhere it is continuous.

Differentiating Fourier series

Term-by-term differentiation of a series can be a useful operation, when it is valid. The following result tells us when this is the case with Fourier series.

Theorem

Suppose f is 2π-periodic and piecewise smooth. If f^{\prime} is also piecewise smooth, and f is continuous everywhere, then the Fourier series for f^{\prime} can be obtained from that of f using term-by-term differentiation.

Remark: This can be proven by using integration by parts in the Euler formulas for the Fourier coefficients of f^{\prime}.

Example

Use an existing series to find the Fourier series of the 2π-periodic function satisfying

$$
f(x)= \begin{cases}-1 & \text { if }-\pi \leq x<0 \\ 1 & \text { if } 0 \leq x<\pi\end{cases}
$$

The graph of $f(x)$ (a square wave)

shows that it is the derivative of the triangular wave.

Daileda Fourier Series (Cont.)

Since the triangular wave is continuous everywhere, we can differentiate its Fourier series term-by-term to get the series for the square wave.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) x)}{(2 k+1)^{2}}\right) & =-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{-(2 k+1) \sin ((2 k+1) x)}{(2 k+1)^{2}} \\
& =\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin ((2 k+1) x)}{(2 k+1)}
\end{aligned}
$$

Warning: The hypothesis that f is continuous is extremely important. For example, if we term-wise differentiate the Fourier series for the discontinuous square wave (above), we get

$$
\frac{4}{\pi} \sum_{k=0}^{\infty} \cos ((2 k+1) x)
$$

which converges (almost) nowhere!

Half-range expansions

Goal: Given a function $f(x)$ defined for $0 \leq x \leq p$, write $f(x)$ as a linear combination of sines and cosines.

Idea: Extend f to have period $2 p$, and find the Fourier series of the resulting function.

Sine and cosine series

We set
$f_{o}=$ odd $2 p$-periodic extension of f, $f_{e}=$ even $2 p$-periodic extension of f.

If we expand f_{o} as a Fourier series, it will involve only sines:

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

This is the sine series expansion of f.
According to Euler's formula the Fourier coefficients are given by

$$
b_{n}=\frac{1}{p} \int_{-p}^{p} \underbrace{f_{o}(x) \sin \left(\frac{n \pi x}{p}\right)}_{\text {even }} d x=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x .
$$

If we expand f_{e} as a Fourier series, it will involve only cosines:

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

This is the cosine series expansion of f.
This time Euler's formulas give

$$
\begin{aligned}
& a_{0}=\frac{1}{2 p} \int_{-p}^{p} \underbrace{f_{e}(x)}_{\text {even }} d x=\frac{1}{p} \int_{0}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} \underbrace{f_{e}(x) \cos \left(\frac{n \pi x}{p}\right)}_{\text {even }} d x=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x .
\end{aligned}
$$

If f is piecewise smooth, both the sine and cosine series converge to the function $\frac{f(x+)+f(x-)}{2}$ (on the interval $[0, p]$).

Example

Find the sine and cosine series expansions of $f(x)=3-x$ on the interval $0 \leq x \leq 3$.

Taking $p=3$ in our work above, the coefficients of the sine series are given by

$$
\begin{aligned}
b_{n} & =\frac{2}{3} \int_{0}^{3}(3-x) \sin \left(\frac{n \pi x}{3}\right) d x \\
& =\frac{2}{3}\left(\frac{-3(3-x)}{n \pi} \cos \left(\frac{n \pi x}{3}\right)-\left.\frac{9}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{3}\right)\right|_{0} ^{3}\right) \\
& =\frac{2}{3} \cdot \frac{9}{n \pi} \cos (0)=\frac{6}{n \pi} .
\end{aligned}
$$

So, the sine series is

$$
\frac{6}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{3}\right)
$$

The cosine series coefficients are

$$
a_{0}=\frac{1}{3} \int_{0}^{3} 3-x d x=\frac{1}{3}\left(3 x-\left.\frac{x^{2}}{2}\right|_{0} ^{3}\right)=\frac{3}{2}
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{2}{3} \int_{0}^{3}(3-x) \cos \left(\frac{n \pi x}{3}\right) d x \\
& =\frac{2}{3}\left(\frac{3(3-x)}{n \pi} \sin \left(\frac{n \pi x}{3}\right)-\left.\frac{9}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{3}\right)\right|_{0} ^{3}\right) \\
& =\frac{2}{3}\left(-\frac{9}{n^{2} \pi^{2}} \cos (n \pi)+\frac{9}{n^{2} \pi^{2}}\right)= \begin{cases}\frac{12}{n^{2} \pi^{2}} & \text { if } n \text { is odd, } \\
0 & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Since we can omit the terms with even n, we write $n=2 k+1$ ($k \geq 0$) and obtain the cosine series
$a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{3}\right)=\frac{3}{2}+\frac{12}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \cos \left(\frac{(2 k+1) \pi x}{3}\right)$.

Here are the graphs of f, f_{o} and f_{e} (over one period):

Consequently, the sine series equals $f(x)$ for $0<x \leq 3$, and the cosine series equals $f(x)$ for $0 \leq x \leq 3$.

