The One-Dimensional Wave Equation Revisited

R. C. Daileda

Trinity University

Partial Differential Equations
 Lecture 8

The vibrating string ... again!

Recall: The motion of an ideal string of length L can be modeled by the 1-D wave equation

$$
u_{t t}=c^{2} u_{x x}(0<x<L, t>0)
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
& u(0, t)=u(L, t)=0 \quad(t>0), \\
& u(x, 0)=f(x), \\
& u_{t}(x, 0)=g(x)
\end{aligned} \quad(0<x<L) .
$$

Remarks:

- Previously: we attempted to express $u(x, t)$ as a series using the principle of superposition. This led to the need for Fourier series.
- Now: we will motivate and complete our earlier procedure.

Separation of variables

We seek "simple" solutions of the form

$$
u(x, t)=X(x) T(t)
$$

Differentiating yields

$$
u_{t t}=X T^{\prime \prime}, u_{x x}=X^{\prime \prime} T
$$

Plugging into the wave equation gives $X T^{\prime \prime}=c^{2} X^{\prime \prime} T$, or

$$
\begin{aligned}
& \text { function } \\
& \text { of } x \text { only }
\end{aligned} \longrightarrow \frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{c^{2} T} \longleftarrow \begin{aligned}
& \text { function } \\
& \text { of } t \text { only }
\end{aligned}
$$

Since x and t are independent, both sides must be constant.

We introduce the separation constant k :

$$
\frac{X^{\prime \prime}}{X}=k=\frac{T^{\prime \prime}}{c^{2} T} .
$$

This yields two ODEs in X and T :

$$
X^{\prime \prime}-k X=0, \quad T^{\prime \prime}-k c^{2} T=0
$$

Imposing the boundary conditions we find that

$$
\begin{aligned}
& 0=u(0, t)=X(0) T(t) \Rightarrow X(0)=0 \\
& 0=u(L, t)=X(L) T(t) \Rightarrow X(L)=0
\end{aligned}
$$

This gives us a boundary value problem in X :

$$
\begin{equation*}
X^{\prime \prime}-k X=0, X(0)=X(L)=0 \tag{1}
\end{equation*}
$$

Solving for X

We now determine the values of k for which (1) has nontrivial solutions.
Case 1: $k=\mu^{2}>0$. We need to solve $X^{\prime \prime}-\mu^{2} X=0$. The characteristic equation is

$$
r^{2}-\mu^{2}=0 \Rightarrow r= \pm \mu,
$$

which gives the general solution $X=c_{1} e^{\mu x}+c_{2} e^{-\mu x}$. The boundary conditions tell us that

$$
c_{1}+c_{2}=c_{1} e^{\mu L}+c_{2} e^{-\mu L}=0,
$$

or in matrix form

$$
\left(\begin{array}{cc}
1 & 1 \\
e^{\mu L} & e^{-\mu L}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0} .
$$

The determinant here is $e^{-\mu L}-e^{\mu L} \neq 0$, which means that $c_{1}=c_{2}=0$. So the only solution to the BVP in this case is $X \equiv 0$.

Case 2: $k=0$. We need to solve $X^{\prime \prime}=0$. Integrating twice gives $X=c_{1} x+c_{2}$.

The boundary conditions give $c_{2}=c_{1} L+c_{2}=0$, which imply that $c_{1}=c_{2}=0$, and hence $X \equiv 0$ again.

Case 3: $k=-\mu^{2}<0$. We need to solve $X^{\prime \prime}+\mu^{2} X=0$. The characteristic equation is

$$
r^{2}+\mu^{2}=0 \Rightarrow r= \pm i \mu
$$

which gives the general solution $X=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)$.

The boundary conditions tell us that

$$
c_{1}=c_{1} \cos (\mu L)+c_{2} \sin (\mu L)=0
$$

We will have nontrivial solutions iff $\sin (\mu L)=0$. This happens iff $\mu L \in \pi \mathbb{Z}$, or

$$
\mu=\mu_{n}=\frac{n \pi}{L}, \quad n \in \mathbb{Z}
$$

Choosing $c_{2}=1$ for convenience, we obtain the solutions

$$
X=X_{n}=\sin \left(\mu_{n} x\right)=\sin \left(\frac{n \pi x}{L}\right), \quad n \in \mathbb{N} .
$$

Remarks:

- We can omit $n \leq 0$ since they just yield multiples of these solutions.
- Up to the choice of the constant, these are the only nontrivial solutions to the BVP for X.

Solving for T

Having determined the X portion of our separated solution, we now turn to T.

Given any $n \in \mathbb{N}$, the separation constant in Case 3 is $k=-\mu_{n}^{2}$.
So T solves $T^{\prime \prime}-k c^{2} T=T^{\prime \prime}+\left(\mu_{n} c\right)^{2} T=0$. The characteristic equation is

$$
r^{2}+\left(\mu_{n} c\right)^{2}=0 \Rightarrow r= \pm i \mu_{n} c
$$

which gives the general solution
$T=T_{n}=b_{n} \cos \left(\mu_{n} c t\right)+b_{n}^{*} \sin \left(\mu_{n} c t\right)=b_{n} \cos \left(\lambda_{n} t\right)+b_{n}^{*} \sin \left(\lambda_{n} t\right)$,
where:

- b_{n} and b_{n}^{*} are constants (to be determined later);
- $\lambda_{n}=\mu_{n} c=c \frac{n \pi}{L}$.

The normal modes

Putting the two factors together we obtain the normal modes of the wave equation (for $n \in \mathbb{N}$)

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=\sin \left(\mu_{n} x\right)\left(b_{n} \cos \left(\lambda_{n} t\right)+b_{n}^{*} \sin \left(\lambda_{n} t\right)\right)
$$

Remarks:

- The nth normal mode:
* is spatially $2 \pi / \mu_{n}=2 L / n$-periodic;
* is temporally $2 \pi / \lambda_{n}=2 L / n c$-periodic.
- As n increases, the normal modes oscillate more rapidly (in space and time).
- Up to a scalar multiple and a phase shift (in time) the modes are all of the form $\sin \left(\mu_{n} x\right) \cos \left(\lambda_{n} t\right)$.

Superposition

Recall: Because the functions u_{n} solve the vibrating string problem, the principle of superposition ensures that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} \sin \left(\mu_{n} x\right)\left(b_{n} \cos \left(\lambda_{n} t\right)+b_{n}^{*} \sin \left(\lambda_{n} t\right)\right)
$$

solves it, too.

Remarks:

- Because it is a common period for each summand, we see that $2 L / c$ is a temporal period for this solution.
- Although this solves the wave equation and has fixed endpoints, we have yet to impose the initial conditions.

Initial conditions

We now use the initial conditions to determine $\left\{b_{n}\right\}$ and $\left\{b_{n}^{*}\right\}$.

Setting $t=0$ yields

$$
f(x)=u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\mu_{n} x\right)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right),
$$

which is the $2 L$-periodic sine expansion of $f(x)$. Hence

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Now differentiate with respect to t and set $t=0$:

$$
g(x)=u_{t}(x, 0)=\sum_{n=1}^{\infty} \lambda_{n} b_{n}^{*} \sin \left(\mu_{n} x\right)=\sum_{n=1}^{\infty} \lambda_{n} b_{n}^{*} \sin \left(\frac{n \pi x}{L}\right)
$$

This is the $2 L$-periodic sine expansion of $g(x)$. Hence

$$
\lambda_{n} b_{n}^{*}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

or, since $\lambda_{n}=n \pi c / L$:

$$
b_{n}^{*}=\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Theorem (Series solution to the vibrating string problem)

The solution of the boundary value problem

$$
\begin{array}{lr}
u_{t t}=c^{2} u_{x x} & (0<x<L, t>0) \\
u(0, t)=u(L, t)=0 & (t>0) \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) & (0<x<L)
\end{array}
$$

is given by

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \left(\mu_{n} x\right)\left(b_{n} \cos \left(\lambda_{n} t\right)+b_{n}^{*} \sin \left(\lambda_{n} t\right)\right)
$$

where $\mu_{n}=\frac{n \pi}{L}, \quad \lambda_{n}=\mu_{n} c$ and

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad b_{n}^{*}=\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x .
$$

Remarks

- Note that the initial shape and velocity influence the solution independently. In particular:
* If $f(x) \equiv 0$, then $b_{n}=0$ for all n.
* If $g(x) \equiv 0$, then $b_{n}^{*}=0$ for all n.
- The solution can also be written as

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\mu_{n} x\right) \cos \left(\lambda_{n} t\right)+\sum_{n=1}^{\infty} b_{n}^{*} \sin \left(\mu_{n} x\right) \sin \left(\lambda_{n} t\right)
$$

- Note that

$$
\begin{aligned}
& b_{n}=(n \text {th } 2 L \text {-periodic sine series coeff. of } f) \\
& b_{n}^{*}=\frac{1}{\lambda_{n}}(n \text {th } 2 L \text {-periodic sine series coeff. of } g)
\end{aligned}
$$

So, if the sine series of f or g are known, we need not use the integral formulae.

Example

Solve the vibrating string problem

$$
\begin{aligned}
& u_{t t}=100 u_{x x} \\
& u(0, t)=u(2, t)=0 \\
& u(x, 0)= \begin{cases}\frac{x}{2} & \text { if } 0 \leq x<1 \\
1-\frac{x}{2} & \text { if } 1 \leq x \leq 2\end{cases} \\
& u_{t}(x, 0)=0 .
\end{aligned}
$$

We have $L=2, c=10$ and $b_{n}^{*}=0$ for all n. Here's the initial shape $(f(x))$:

According to exercise 2.4.17b (with $p=L=2, a=1$ and $h=1 / 2$):

$$
f(x)=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin (n \pi / 2)}{n^{2}} \sin \left(\frac{n \pi x}{2}\right) \Rightarrow b_{n}=\frac{4 \sin (n \pi / 2)}{\pi^{2} n^{2}}
$$

We therefore have

$$
\begin{align*}
u(x, t) & =\sum_{n=1}^{\infty} b_{n} \sin \left(\mu_{n} x\right) \cos \left(\lambda_{n} t\right) \\
& =\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin (n \pi / 2)}{n^{2}} \sin \left(\frac{n \pi x}{2}\right) \cos (5 n \pi t) \tag{A}
\end{align*}
$$

since $\mu_{n}=n \pi / 2$ and $\lambda_{n}=\mu_{n} c=5 n \pi$.

Example

Suppose that in the preceding problem we instead require that $u_{t}(x, 0)=1$ for $0<x<2$. Find $u(x, t)$ in this case.

We only need to find b_{n}^{*} and add to our earlier work.
By exercise 2.3.1, the 4-periodic sine series for $g(x)=1$ is

$$
\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} \sin \left(\frac{(2 k+1) \pi x}{2}\right)
$$

Note only odd indexed modes occur. Therefore

$$
\begin{aligned}
\lambda_{2 k+1} b_{2 k+1}^{*} & =\frac{4}{(2 k+1) \pi} \\
& \Rightarrow b_{2 k+1}^{*}=\frac{4}{\lambda_{2 k+1}(2 k+1) \pi}=\frac{4}{5(2 k+1)^{2} \pi^{2}}
\end{aligned}
$$

It follows that the b_{n}^{*} portion of the solution is

$$
\begin{align*}
& \sum_{n=1}^{\infty} b_{n}^{*} \sin \left(\mu_{n} x\right) \sin \left(\lambda_{n} t\right)=\sum_{k=0}^{\infty} b_{2 k+1}^{*} \sin \left(\mu_{2 k+1} x\right) \sin \left(\lambda_{2 k+1} t\right) \\
& =\frac{4}{5 \pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \sin \left(\frac{(2 k+1) \pi x}{2}\right) \sin (5(2 k+1) \pi t) \tag{B}
\end{align*}
$$

The overall solution is the sum of this and our previous answer:

$$
u(x, t)=(\mathrm{A})+(\mathrm{B})
$$

