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The vibrating string ... again!

Recall: The motion of an ideal string of length L can be modeled
by the 1-D wave equation

U = gy (0<x< L, t>0),

subject to the boundary and initial conditions

(O t) - U(L7 t) (t > 0)7
u(x,0) = f(x),
ut(x,O) = g(x) (0 < x < L).

Remarks:
@ Previously: we attempted to express u(x, t) as a series using
the principle of superposition. This led to the need for Fourier

series.
@ Now: we will motivate and complete our earlier procedure.
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Separation of Variables
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Separation of variables

We seek “simple” solutions of the form
u(x, t) = X(x)T(t).
Differentiating yields
Ui = XT", g = X"T.
Plugging into the wave equation gives XT" = X" T, or

. " 1 .
function X T function

of x only X 2T of t only

Since x and t are independent, both sides must be constant.
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Separation of Variables
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We introduce the separation constant k:

X// T//
Zo—k=——.
X c2T

This yields two ODEs in X and T:
X"—kX =0, T" — ke®T = 0.

Imposing the boundary conditions we find that

0=u(0,t) = X(0)T(t) = X(0)
0=u(L,t) = X(L)T(t) = X(L)

)

0
0.

This gives us a boundary value problem in X:

X" — kX =0, X(0) = X(L) = 0. (1)
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Solving for X

We now determine the values of k for which (1) has nontrivial
solutions.

Case 1: k = ;?> > 0. We need to solve X" — X = 0. The
characteristic equation is

rP—u?=0 = r=4p,

which gives the general solution X = cie"* + cpe™X. The
boundary conditions tell us that

L —ul
a+o=ce' +ce " =0,

or in matrix form

(oo ) (2)-(0)
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The determinant here is e H#L — ekl = 0, which means that
c1 = ¢ = 0. So the only solution to the BVP in this case is X = 0.

Case 2: k = 0. We need to solve X" = 0. Integrating twice gives
X = C1X + C.

The boundary conditions give ¢ = ¢c1L + ¢ = 0, which imply that
c1 = ¢ =0, and hence X = 0 again.

Case 3: k = —u? < 0. We need to solve X” 4+ 12X = 0. The
characteristic equation is

Pru>=0 = r=ip,

which gives the general solution X = ¢j cos(ux) + ¢z sin(pux).
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Separation of Variables
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The boundary conditions tell us that
¢ = ¢ cos(ul) + casin(ul) = 0.

We will have nontrivial solutions iff sin(uL) = 0. This happens iff

ul € Z, or
nm
H=Hn=" ne 7.

Choosing ¢, = 1 for convenience, we obtain the solutions

X = X, = sin(pupx) = sin (nLLX> , neN.

Remarks:

@ We can omit n < 0 since they just yield multiples of these
solutions.

@ Up to the choice of the constant, these are the only nontrivial
solutions to the BVP for X.
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Separation of Variables
0000080

Solving for T

Having determined the X portion of our separated solution, we
now turn to T.

Given any n € N, the separation constant in Case 3 is k = —p2.
So T solves T" — kT = T" + (unc)®T = 0. The characteristic
equation is

r? + (,u,,c)2 =0 = r==iunc,

which gives the general solution

T = T, = bpcos (punct)+ by, sin (upct) = b, cos(Apt) + by, sin(Apt),

where:
@ b, and b} are constants (to be determined later);
nm
@ A\, =ppc= CT.
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Separation of Variables
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The normal modes

Putting the two factors together we obtain the normal modes of
the wave equation (for n € N)

un(x,t) = Xp(x) Tp(t) = sin(unx) (by cos(Ant) + b} sin(Ant)) .

Remarks:
@ The nth normal mode:
* is spatially 27/, = 2L/n-periodic;
* is temporally 27/, = 2L/nc-periodic.

@ As n increases, the normal modes oscillate more rapidly (in
space and time).

e Up to a scalar multiple and a phase shift (in time) the modes
are all of the form sin(px) cos(Ant).
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Superposition

Recall: Because the functions u, solve the vibrating string
problem, the principle of superposition ensures that

u(x, £) =Y un(x,t) = > sin(unx) (bn cos(Ant) + b sin(Ant))

n=1 n=1

solves it, too.

Remarks:

@ Because it is a common period for each summand, we see
that 2L/c is a temporal period for this solution.

@ Although this solves the wave equation and has fixed
endpoints, we have yet to impose the initial conditions.
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Superposition
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Initial conditions

We now use the initial conditions to determine {b,} and {b}}.

Setting t = 0 yields

f(x) = u(x,0) Zb sin(funx) ibnsin (?),
n=1

which is the 2L-periodic sine expansion of f(x). Hence

2 rt ./ NTX
b, = L/o f(x)sin (T) dx.
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Now differentiate with respect to t and set t = 0:
> > nmwx
g(x) = ue(x,0) = z:/\,,b;k7 sin(ppx) = Z)\,,bj; sin (T) .
n=1 n=1
This is the 2L-periodic sine expansion of g(x). Hence

. 2t ./ NTX
)\,,b,,—L/O g(x)sm( T ) dx,

or, since \, = nwc/L:

by, = 2 Lg(x)sin (mzx> dx.

cnT Jo
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Theorem (Series solution to the vibrating string problem)

The solution of the boundary value problem

Upr = C2 Uy (0<x< L, t>0),

u(0,t) =u(L,t)=0 (t >0),

u(x,0) = f(x), ue(x,0) = g(x) (0<x< L)
is given by

u(x,t) =Y sin(unx) (bpcos(Ant) + b sin(Ant))

n=1

where i, = nTw An = ppc and

b, = i/OL f(x)sin (?) dx, by = 2 g(x)sin (HLLX) dx.
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RENMEIS

@ Note that the initial shape and velocity influence the solution

independently. In particular:
* If f(x) =0, then b, =0 for all n.

« If g(x) =0, then b} = 0 for all n.
@ The solution can also be written as

u(x,t) = Z b sin(nx) cos(Ant) + Z by sin(punx) sin(Ant).
n=1 n=1
@ Note that
b, = (nth 2L-periodic sine series coeff. of ),

1
by = o™ (nth 2L-periodic sine series coeff. of g).

n
n
So, if the sine series of f or g are known, we need not use the
integral formulae.

Daileda 1-D Wave Equation Redux



Examples
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Solve the vibrating string problem
Uge = 100, (0<x<2 t>0),
u(0,t) =u(2,t) =0 (t>0),
X if 0 < 1
ux0)=42 =N
1-— % ifl1<x<2,
ut(x,0) = 0.

We have L =2, ¢ =10 and b}, = 0 for all n. Here's the initial
shape (f(x)):

Daileda 1-D Wave Equation Redux



Examples
0®00

According to exercise 2.4.17b (with p=L =2, a=1 and
h=1/2):

o) = 4 30 SOm/) g (mmxyp _ dsin(in/2)
n=1

2 m2n2

We therefore have

u(x,t) = bpsin(nx) cos(Ant)

n=1

_ %Z sin(:;r/2) i (n72rX> cos(5nt), (A)
n=1

since pp, = nm/2 and A\, = ppc = 5n7.
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Suppose that in the preceding problem we instead require that
ur(x,0) =1 for 0 < x < 2. Find u(x, t) in this case.

We only need to find b}, and add to our earlier work.

By exercise 2.3.1, the 4-periodic sine series for g(x) = 1 is
o

i Z ]. Sin (2k + 1)7TX
7r 2k +1 2 ’

k=0

Note only odd indexed modes occur. Therefore

*
Nok+1bopi1 = 5o

. 4 4
C dokr1(2k+ )7 5(2k + 1)272°
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It follows that the b} portion of the solution is

Z by sin (ppx) sin (Apt) = Z b5y 1 sin (pok41x) sin (Azk41t)
n=1 k=0

= 54? > @k Jlr 7 S0 <(2k +21)7TX> sin (5(2k + 1)7t). (B)
k=0

The overall solution is the sum of this and our previous answer:

u(x,t) = (A) + (B).
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