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Linear differential operators

Definition: A linear differential operator (in the variables
x1, x2, . . . xn) is a sum of terms of the form

A(x1, x2, . . . , xn)
∂a1+a2+···+an

∂xa11 ∂xa22 · · · ∂xann
,

where each ai ≥ 0.

Examples: The following are linear differential operators.

1. The Laplacian:

∇2 =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

2. W = c2∇2 − ∂2

∂t2
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3. H = c2∇2 − ∂

∂t

4. T =
∂

∂t
− v1

∂

∂x1
− v2

∂

∂x2
− · · · − vn

∂

∂xn
=

∂

∂t
− v · ∇

5. The general first order linear operator (in two variables):

D1 = A(x , y)
∂

∂x
+ B(x , y)

∂

∂y
+ C (x , y)

6. The general second order linear operator (in two variables):

D2 = A(x , y)
∂2

∂x2
+ 2B(x , y)

∂2

∂x∂y
+ C (x , y)

∂2

∂y2

+ D(x , y)
∂

∂x
+ E (x , y)

∂

∂y
+ F (x , y)
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Theorem

If D is a linear differential operator (in the variables x1, x2, · · · xn),
u1 and u2 are functions (in the same variables), and c1 and c2 are
constants, then

D(c1u1 + c2u2) = c1Du1 + c2Du2.

Remarks:

This follows immediately from the fact that each partial
derivative making up D has this property, e.g.

∂3

∂x21∂x2
(c1u1 + c2u2) = c1

∂3u1
∂x21∂x2

+ c2
∂3u2

∂x21∂x2
.

This property extends (in the obvious way) to any number of
functions and constants.
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Linear PDEs

Definition: A linear PDE (in the variables x1, x2, · · · , xn) has the
form

Du = f (1)

where:

D is a linear differential operator (in x1, x2, · · · , xn),

f is a function (of x1, x2, · · · , xn).

We say that (1) is homogeneous if f ≡ 0.
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Examples

The following are linear PDEs.

1. The Laplace equation: ∇2u = 0 (homogeneous)

2. The wave equation: c2∇2u − ∂2u

∂t2
= 0 (homogeneous)

3. The heat equation: c2∇2u − ∂u

∂t
= 0 (homogeneous)

4. The Poisson equation: ∇2u = f (x1, x2, . . . , xn)
(inhomogeneous if f ̸≡ 0)

5. The advection equation:
∂u

∂t
+ κ

∂u

∂x
+ ru = k(x , t)

(inhomogeneous if k ̸≡ 0)

6. The telegraph equation:
∂2u

∂t2
+ 2B

∂u

∂t
− c2

∂2u

∂x2
+ Au = 0

(homogeneous)
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Boundary value problems

A boundary value problem (BVP) consists of:

a domain Ω ⊆ Rn,

a PDE (in n independent variables) to be solved in the interior
of Ω,

a collection of boundary conditions (BCs) to be satisfied on
the boundary of Ω.

The data for a BVP:

Ω

PDE

Boundary 

conditions
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Linear boundary conditions

Definition: Let Ω ⊆ Rn be the domain of a BVP and let A be a
subset of the boundary of Ω.

We say that a BC on A is linear if it has the form

δu|A = f |A (2)

where:

δ is a linear differential operator (in x1, x2, · · · , xn),

f is a function (of x1, x2, · · · , xn).

(The notation ·|A means “restricted to A.”) We say that (2) is
homogeneous if f ≡ 0.
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Examples

The following are linear BCs.

1. Dirichlet conditions: u|A = f |A, such as

u(x , 0) = f (x) for 0 < x < L, or u(L, t) = 0 for t > 0

2. Neumann conditions:
∂u

∂n

∣∣∣∣
A

= f |A, where
∂u

∂n
is the

directional derivative perpendicular to A, such as

ut(x , 0) = g(x) for 0 < x < L, or ux(0, t) = 0 for t > 0

3. Robin conditions: u + a
∂u

∂n

∣∣∣∣
A

= f |A, such as

u(L, t) + ux(L, t) = 0 for t > 0
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The principle of superposition

Theorem

Let D and δ be linear differential operators (in the variables
x1, x2, . . . , xn), let f1 and f2 be functions (in the same variables),
and let c1 and c2 be constants.

If u1 solves the linear PDE Du = f1 and u2 solves Du = f2,
then u = c1u1 + c2u2 solves Du = c1f1 + c2f2. In particular, if
u1 and u2 both solve the same homogeneous linear PDE, so
does u = c1u1 + c2u2.

If u1 satisfies the linear BC δu|A = f1|A and u2 satisfies
δu|A = f2|A, then u = c1u1 + c2u2 satisfies
δu|A = c1f1 + c2f2|A. In particular, if u1 and u2 both satisfy
the same homogeneous linear BC, so does u = c1u1 + c2u2.
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Remarks on the superposition principle

It is an easy consequence of the linearity of D, δ, e.g. if
Du1 = f1 and Du2 = f2, then

D(c1u1 + c2u2) = c1Du1 + c2Du2 = c1f1 + c2f2.

It extends (in the obvious way) to any number of functions
and constants.

It implies that linear combinations of functions that satisfy
homogeneous linear PDEs/BCs satisfy the same equations.
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Non-example

Warning: The principle of superposition can easily fail for
nonlinear PDEs or boundary conditions.

Consider the nonlinear PDE

ux + u2uy = 0.

One solution of this PDE is

u1(x , y) =
−1 +

√
1 + 4xy

2x
.

However, the function u = cu1 does not solve the same PDE
unless c = 0,±1.
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Superposition and separation of variables

Consider a linear BVP consisting of the following data:

(A) A homogeneous linear PDE on a region Ω ⊆ Rn;

(B) A (finite) list of homogeneous linear BCs on (part of) ∂Ω;

(C) A (finite) list of inhomogeneous linear BCs on (part of) ∂Ω.

Roughly speaking, to solve such a problem one:

1. Finds all “separated” solutions to (A) and (B).

This amounts to solving a collection of linear ODE BVPs
linked by separation constants.
Superposition guarantees any linear combination of separated
solutions also solves (A) and (B).

2. Determines the specific linear combination of separated
solutions that solves (C).
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Remarks on separation of variables

When separated solutions involve sines and cosines, finding
the solutions to inhomogeneous BCs utilize Fourier
series/half-range expansions.

More generally, one must make use of “Fourier like” series
involving other families of orthogonal functions (e.g.
Sturm-Liouville theory).

When there are no homogeneous BCs, or “too many”
inhomogeneous BCs, one can “homogenize” parts of the
problem and then superimpose these partial results to get the
complete solution.

Depending on the shape of the domain in question, successful
separation of variables may require change of coordinates.
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