Characters of Finite Abelian Groups
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Let A be an (additive) abelian group. A character of A is a homomorphism
x:A—C*.
Because A is additive and C* is multiplicative, this means that
x(a+b) = x(a)x(b)
for all a,b € A. If A happens to be multiplicative, we instead have
x(ab) = x(a)x(b)

for all a,b € A. It should always be clear from context which of these relations defines x to
be a character of A.

Example 1. For any a € C, define xy : R — C* by

X(x) = e,
Then y is a character of R.
Example 2. Define y : R* — C* by
x
x(x) = .
|z

Then x is a character of R*. The same definition also yields a character of C* if we allow
x to be complex.

Example 3. If f : A — B is a homomorphism of abelian groups and x is a character of B,
then the composition y o f is a character of A, since the composition of homomorphisms is
a homomorphism.

Example 4. Let n € N and choose ¢ € C* satisfying ("™ = 1 (an nth root of unity). Define
Y Z — C* by ¥(m) = (™. Then ¢ is a character of Z. Let mZ = kert. By the First
Isomorphism Theorem 1) yields a character ¢ : Z/mZ — C*. If a € nZ, so that a = nk,
then

¢(a) — Ca — an — (<n>k; — 1k — 17
so that nZ C kervy = mZ. In general nZ and kery need not be the same. However,
as we have seen, the Generalized First Isomorphism Theorem provides a homomorphism



7 . Z/nZ — Z/mZ given by T(a + nZ) = a + mZ. Example 3 then tells us that y = o7
is a character of Z/nZ. It is given explicitly by

X(a+nZ) = ¢(7(a+nZ)) = b(a+mZ) = ¥(a) = ¢

Example 5. Let A be an additive abelian group and let n € N. The rule a — na defines a
surjective homomorphism A — nA whose kernel is clearly the n-torsion subgroup A[n]. So
by the First Isomorphism Theorem we have

A/A[n] = nA.
If A is finite, this implies |[nA| = |A/A[n]| = |A|/|A[n]|, so that [A : nA] = |A|/|nA| = |A[n]|.

If A is multiplicative, then nA becomes the set (subgroup) A" = {a"|a € A} of nth
powers in A, and the preceding computation shows that [A : A"| = |A,|, where A, = {a €
A|a" = e} is the subgroup of “nth roots of ¢” in A.

Example 6. Let p be an odd prime and let A = (Z/pZ)*. Take n = 2 in the preceding
example. The square roots of 1 in (Z/pZ)* satisfy 22 =1 (mod p), which is is equivalent to
22 =1 =0 (mod p). Since 22 — 1 = (z — 1)(z + 1), we find that 2> — 1 =0 (mod p) if and
only if p|(z — 1)(z +1). Because p is prime, this happens if and only if p|z — 1 or p|z + 1, i.e.
x = %1 (mod p). Since 1 # —1 (mod p) (why?), this means that £1 are the two distinct
square roots of 1 in (Z/pZ)*.

Example 5 now tells us that the subgroup 7" of squares in (Z/pZ)* has index [{£1}| = 2in
(Z/pZ)*. So (Z/pZ)*]T = {T,eT'} = {£1}. Composing this isomorphism with the natural
surjection yields a character x : (Z/pZ)* — {£1} called the Legendre symbol. Notice that
x(a) = 1 if and only if a7 is the trivial coset T', which is equivalent to a € T. Likewise,
x(a) = =1 if and only if a7 = €T or a € €I'. We conclude that

1 if a is a square in (Z/pZ)*,
x(a) = .
—1 otherwise.

The traditional notation for the Legendre symbol is

If ¢ is another odd prime, then ged(q,p) = 1 so that we may view ¢ € (Z/pZ)* and

p € (Z/qZ)*. There is a remarkable relationship between the Legendre symbols <§> and

<%) , discovered by Euler and Legendre and first proven by Gauss in 1801, known as the Law
of Quadratic Reciprocity, which states that



That is, for odd primes p # ¢, whether or not p is a square modulo ¢ depends on whether
or not ¢ is a square modulo p! Mathematicians have long been fascinated with the Law of
Quadratic Reciprocity, and there are literally hundreds of different published proofs.

Example 7. Let G be a finite group of order n. We have seen previously that a +— A,
defines a monomorphism A : G — Perm(G). If we fix an isomorphism [ : Perm(G) — S,
then f o A is an embedding of GG into S,,. So we may assume G < S,. The sign then
determines a homomorphism € : G — {£1}. The sign of a € G tells you whether or not
left multiplication by a is an even or odd permutation of G. Since {£1} < C*, when G is
abelian € is a character of G.

Let A be an additive abelian group. Let A denote the set of all characters of A. If
X1 € A, then the function x¢ : A — C* defined by (xt)(a) = x(a)(a) for a € A'is ecasily
seen to be another character of A. This yields a binary operation on A which makes A into
a group called the dual of A. The identity element in Ais the trivial character, which is just
the trivial homomorphism defined by xo(a) = 1 for all a € A. The inverse of y € A is given
by x(a) = 1/x(a) = x(a)™! for all a € A.

The passage from an abelian group to its dual “reverses arrows” (in the language of
category theory, A — Ais a cofunctor). Suppose that A and B are abelian groups and we
have a homomorphism f:A— B. Given y € B the composition x o f belongs to A. If we
define f B— A by f ( ) = x o f, then it is easy to see that f is a homomorphism. We will
call f the homomorphism dual to f.

An important feature of finite abelian groups is that they are self-dual. That is, for any
finite abelian group A one has
A~ A (1)
We will prove this as an application of the Fundamental Theorem of Finite Abelian Groups.
Recall that the Fundamental Theorem states that every finite abelian group is a direct sum
of cyclic groups. Our proof, therefore, will consist of two parts. We will show that the
operations of direct sum and dualizing commute, so that the dual of a direct sum is the
direct sum of the duals of the individual summands. Then we will show that every finite
cyclic group is self-dual. The result (1) then follows immediately.

Lemma 1. Let A and B be abelian groups. Then
AcB=~AaB.

Sketch of Proof. Let mq : A @® B — A be projection onto the first coordinate, ma(a,b) = a,
and let iy : A — A @ B be the “inclusion” i4(a) = (a,0). Both are homomorph1sms Deﬁne

~

’/TB and ip s1m11arly We then have the dual maps 74 C A > A® B, zA : A@ B — A,
‘B = A® B and ip 5:A® B — B. We “add” these to get homomorphisms

given by (71 @ 75)(x, ) = a(X)WB(W and
A ®ip A® B — ﬁeﬂ?,



given by (ia ®ip)(x) = (ia(x),ip(x)). It is straightforward to check that these maps are
inverse isomorphisms, proving the lemma. The details are left to the reader. O

Lemma 2. If C is a finite cyclic group, then C' = C.

Sketch of Proof. We may assume C' = Z/nZ for some n € N. Let u,, < C* denote the group
of nth roots of unity. Given x € Z/nZ, we have x(1)" = x(n-1) = x(n) = x(0) = 1, so that

o —

X(1) € p,. It is then easy to see that y — x(1) defines a homomorphism f : Z/nZ — p,.
Because 1 generates Z/nZ, x is trivial if and only if x(1) = 1. This means that ker f is
trivial. Given ¢ € w,, the character x of Example 4 satisfies x(1) = ¢. This shows that f is
surjective, and is therefore an isomorphism. Because u,, = Z/nZ we have

7/ = p, = Z/nZ.
This finishes the proof. n
Theorem 1. Let A be a finite abelian group. Then A = A.

Proof. Use the Fundamental Theorem to write

where each Cj is a finite cyclic group. Lemma 1, Lemma 2 and a quick induction then imply
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Example 8. As an application, we return to Examples 6 and 7. Let p be an odd prime. The

—

Legendre symbol x from Example 6 and the sign € from Example 7 both belong to (Z/pZ)*.
Because exactly half of the elements of (Z/pZ)* are perfect squares, x is nontrivial, i.e.
imy = {£1}. We claim that e is also nontrivial.

To prove this, we need a nontrivial result from number theory. Specifically, for any odd
prime p the group (Z/pZ)* is cyclic. Specific generators are not easy to identify in general,
but all we need to know is that one exists. Write (Z/pZ)* = (r). Then |r| = [(Z/pZ)*| =
p — 1. By homework exercise 10.1.3 we then have

6(7.) — (_1)(p71+1)(p71)/(p71) — (_1)p - 1

?

since p is odd. In particular, this shows that —1 € im, which proves that ¢ is nontrivial.

—

Now let a € (Z/pZ)*. Then by the definition of character multiplication

X(a) = (x(a))* = (£1) =1 =xo(a) = X" =xo.



Since x is nontrivial, this shows that |x| = 2. An identical computation with e shows that
le| = 2. Because (Z/pZ)* is cyclic of order p—1, Lemma 2 implies that (Z/pZ)* is also cyclic
of order p — 1. Recall that a finite cyclic group has a unique subgroup of any allowable size
(dividing the order of the group). Since p—1 is even, this tells us that (Z/pZ)* has a unique
subgroup of order 2. But both y and e generate such a subgroup, by the computations above.
Hence
X = €.

That is, the Legendre symbol, which is essentially the indicator function for the subgroup
of squares in (Z/pZ)*, is the same as the permutation sign character on (Z/pZ)*. So the
way in which a € (Z/pZ)* permutes the elements of (Z/pZ)* determines whether or not the

congruence r* = a (mod p) has a solution!



