Characters of Finite Abelian Groups

R. C. Daileda

Let A be an (additive) abelian group. A character of A is a homomorphism

$$
\chi: A \rightarrow \mathbb{C}^{\times}
$$

Because A is additive and \mathbb{C}^{\times}is multiplicative, this means that

$$
\chi(a+b)=\chi(a) \chi(b)
$$

for all $a, b \in A$. If A happens to be multiplicative, we instead have

$$
\chi(a b)=\chi(a) \chi(b)
$$

for all $a, b \in A$. It should always be clear from context which of these relations defines χ to be a character of A.

Example 1. For any $a \in \mathbb{C}$, define $\chi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$by

$$
\chi(x)=e^{a x}
$$

Then χ is a character of \mathbb{R}.

Example 2. Define $\chi: \mathbb{R}^{\times} \rightarrow \mathbb{C}^{\times}$by

$$
\chi(x)=\frac{x}{|x|}
$$

Then χ is a character of \mathbb{R}^{\times}. The same definition also yields a character of \mathbb{C}^{\times}if we allow x to be complex.

Example 3. If $f: A \rightarrow B$ is a homomorphism of abelian groups and χ is a character of B, then the composition $\chi \circ f$ is a character of A, since the composition of homomorphisms is a homomorphism.

Example 4. Let $n \in \mathbb{N}$ and choose $\zeta \in \mathbb{C}^{\times}$satisfying $\zeta^{n}=1$ (an nth root of unity). Define $\psi: \mathbb{Z} \rightarrow \mathbb{C}^{\times}$by $\psi(m)=\zeta^{m}$. Then ψ is a character of \mathbb{Z}. Let $m \mathbb{Z}=\operatorname{ker} \psi$. By the First Isomorphism Theorem ψ yields a character $\bar{\psi}: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{C}^{\times}$. If $a \in n \mathbb{Z}$, so that $a=n k$, then

$$
\psi(a)=\zeta^{a}=\zeta^{n k}=\left(\zeta^{n}\right)^{k}=1^{k}=1
$$

so that $n \mathbb{Z} \subseteq \operatorname{ker} \psi=m \mathbb{Z}$. In general $n \mathbb{Z}$ and $\operatorname{ker} \psi$ need not be the same. However, as we have seen, the Generalized First Isomorphism Theorem provides a homomorphism
$\bar{\pi}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ given by $\bar{\pi}(a+n \mathbb{Z})=a+m \mathbb{Z}$. Example 3 then tells us that $\chi=\bar{\psi} \circ \bar{\pi}$ is a character of $\mathbb{Z} / n \mathbb{Z}$. It is given explicitly by

$$
\chi(a+n \mathbb{Z})=\bar{\psi}(\bar{\pi}(a+n \mathbb{Z}))=\bar{\psi}(a+m \mathbb{Z})=\psi(a)=\zeta^{a} .
$$

Example 5. Let A be an additive abelian group and let $n \in \mathbb{N}$. The rule $a \mapsto n a$ defines a surjective homomorphism $A \rightarrow n A$ whose kernel is clearly the n-torsion subgroup $A[n]$. So by the First Isomorphism Theorem we have

$$
A / A[n] \cong n A
$$

If A is finite, this implies $|n A|=|A / A[n]|=|A| /|A[n]|$, so that $[A: n A]=|A| /|n A|=|A[n]|$.
If A is multiplicative, then $n A$ becomes the set (subgroup) $A^{n}=\left\{a^{n} \mid a \in A\right\}$ of nth powers in A, and the preceding computation shows that $\left[A: A^{n}\right]=\left|A_{n}\right|$, where $A_{n}=\{a \in$ $\left.A \mid a^{n}=e\right\}$ is the subgroup of " nth roots of e " in A.

Example 6. Let p be an odd prime and let $A=(\mathbb{Z} / p \mathbb{Z})^{\times}$. Take $n=2$ in the preceding example. The square roots of 1 in $(\mathbb{Z} / p \mathbb{Z})^{\times}$satisfy $x^{2} \equiv 1(\bmod p)$, which is is equivalent to $x^{2}-1 \equiv 0(\bmod p)$. Since $x^{2}-1=(x-1)(x+1)$, we find that $x^{2}-1 \equiv 0(\bmod p)$ if and only if $p \mid(x-1)(x+1)$. Because p is prime, this happens if and only if $p \mid x-1$ or $p \mid x+1$, i.e. $x \equiv \pm 1(\bmod p)$. Since $1 \not \equiv-1(\bmod p)($ why? $)$, this means that ± 1 are the two distinct square roots of 1 in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.

Example 5 now tells us that the subgroup T of squares in $(\mathbb{Z} / p \mathbb{Z})^{\times}$has index $|\{ \pm 1\}|=2$ in $(\mathbb{Z} / p \mathbb{Z})^{\times}$. So $(\mathbb{Z} / p \mathbb{Z})^{\times} / T=\{T, \epsilon T\} \cong\{ \pm 1\}$. Composing this isomorphism with the natural surjection yields a character $\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ called the Legendre symbol. Notice that $\chi(a)=1$ if and only if $a T$ is the trivial coset T, which is equivalent to $a \in T$. Likewise, $\chi(a)=-1$ if and only if $a T=\epsilon T$ or $a \in \epsilon T$. We conclude that

$$
\chi(a)= \begin{cases}1 & \text { if } a \text { is a square in }(\mathbb{Z} / p \mathbb{Z})^{\times} \\ -1 & \text { otherwise }\end{cases}
$$

The traditional notation for the Legendre symbol is

$$
\chi(a)=\left(\frac{a}{p}\right) .
$$

If q is another odd prime, then $\operatorname{gcd}(q, p)=1$ so that we may view $q \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and $p \in(\mathbb{Z} / q \mathbb{Z})^{\times}$. There is a remarkable relationship between the Legendre symbols $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$, discovered by Euler and Legendre and first proven by Gauss in 1801, known as the Law of Quadratic Reciprocity, which states that

$$
\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}\left(\frac{q}{p}\right) .
$$

That is, for odd primes $p \neq q$, whether or not p is a square modulo q depends on whether or not q is a square modulo p ! Mathematicians have long been fascinated with the Law of Quadratic Reciprocity, and there are literally hundreds of different published proofs.

Example 7. Let G be a finite group of order n. We have seen previously that $a \mapsto \lambda_{a}$ defines a monomorphism $\lambda: G \rightarrow \operatorname{Perm}(G)$. If we fix an isomorphism $f: \operatorname{Perm}(G) \rightarrow S_{n}$, then $f \circ \lambda$ is an embedding of G into S_{n}. So we may assume $G \leq S_{n}$. The sign then determines a homomorphism $\epsilon: G \rightarrow\{ \pm 1\}$. The sign of $a \in G$ tells you whether or not left multiplication by a is an even or odd permutation of G. Since $\{ \pm 1\} \leq \mathbb{C}^{\times}$, when G is abelian ϵ is a character of G.

Let A be an additive abelian group. Let \widehat{A} denote the set of all characters of A. If $\chi, \psi \in \widehat{A}$, then the function $\chi \psi: A \rightarrow \mathbb{C}^{\times}$defined by $(\chi \psi)(a)=\chi(a) \psi(a)$ for $a \in A$ is easily seen to be another character of A. This yields a binary operation on \widehat{A}, which makes \widehat{A} into a group called the dual of A. The identity element in \widehat{A} is the trivial character, which is just the trivial homomorphism defined by $\chi_{0}(a)=1$ for all $a \in A$. The inverse of $\chi \in \widehat{A}$ is given by $\chi^{-1}(a)=1 / \chi(a)=\chi(a)^{-1}$ for all $a \in A$.

The passage from an abelian group to its dual "reverses arrows" (in the language of category theory, $A \mapsto \widehat{A}$ is a cofunctor). Suppose that A and B are abelian groups and we have a homomorphism $f: A \rightarrow B$. Given $\chi \in \widehat{B}$, the composition $\chi \circ f$ belongs to \widehat{A}. If we define $\widehat{f}: \widehat{B} \rightarrow \widehat{A}$ by $\widehat{f}(\chi)=\chi \circ f$, then it is easy to see that \widehat{f} is a homomorphism. We will call \widehat{f} the homomorphism dual to f.

An important feature of finite abelian groups is that they are self-dual. That is, for any finite abelian group A one has

$$
\begin{equation*}
A \cong \widehat{A} . \tag{1}
\end{equation*}
$$

We will prove this as an application of the Fundamental Theorem of Finite Abelian Groups. Recall that the Fundamental Theorem states that every finite abelian group is a direct sum of cyclic groups. Our proof, therefore, will consist of two parts. We will show that the operations of direct sum and dualizing commute, so that the dual of a direct sum is the direct sum of the duals of the individual summands. Then we will show that every finite cyclic group is self-dual. The result (1) then follows immediately.
Lemma 1. Let A and B be abelian groups. Then

$$
\widehat{A \oplus B} \cong \widehat{A} \oplus \widehat{B}
$$

Sketch of Proof. Let $\pi_{A}: A \oplus B \rightarrow A$ be projection onto the first coordinate, $\pi_{A}(a, b)=a$, and let $i_{A}: A \rightarrow A \oplus B$ be the "inclusion" $i_{A}(a)=(a, 0)$. Both are homomorphisms. Define π_{B} and i_{B} similarly. We then have the dual maps $\widehat{\pi_{A}}: \widehat{A} \rightarrow \widehat{A \oplus B}, \widehat{i_{A}}: \widehat{A \oplus B} \rightarrow \widehat{A}$, $\widehat{\pi_{B}}: \widehat{B} \rightarrow \widehat{A \oplus B}$ and $\widehat{i_{B}}: \widehat{A \oplus B} \rightarrow \widehat{B}$. We "add" these to get homomorphisms

$$
\widehat{\pi_{A}} \oplus \widehat{\pi_{B}}: \widehat{A} \oplus \widehat{B} \rightarrow \widehat{A \oplus B}
$$

given by $\left(\widehat{\pi_{A}} \oplus \widehat{\pi_{B}}\right)(\chi, \psi)=\widehat{\pi_{A}}(\chi) \widehat{\pi_{B}}(\psi)$, and

$$
\widehat{i_{A}} \oplus \widehat{i_{B}}: \widehat{A \oplus B} \rightarrow \widehat{A} \oplus \widehat{B}
$$

given by $\left(\widehat{i_{A}} \oplus \widehat{i_{B}}\right)(\chi)=\left(\widehat{i_{A}}(\chi), \widehat{i_{B}}(\chi)\right)$. It is straightforward to check that these maps are inverse isomorphisms, proving the lemma. The details are left to the reader.

Lemma 2. If C is a finite cyclic group, then $C \cong \widehat{C}$.
Sketch of Proof. We may assume $C=\mathbb{Z} / n \mathbb{Z}$ for some $n \in \mathbb{N}$. Let $\boldsymbol{\mu}_{n} \leq \mathbb{C}^{\times}$denote the group of nth roots of unity. Given $\chi \in \widehat{\mathbb{Z} / n \mathbb{Z}}$, we have $\chi(1)^{n}=\chi(n \cdot 1)=\chi(n)=\chi(0)=1$, so that $\chi(1) \in \boldsymbol{\mu}_{n}$. It is then easy to see that $\chi \mapsto \chi(1)$ defines a homomorphism $f: \widehat{\mathbb{Z} / n \mathbb{Z}} \rightarrow \boldsymbol{\mu}_{n}$. Because 1 generates $\mathbb{Z} / n \mathbb{Z}, \chi$ is trivial if and only if $\chi(1)=1$. This means that ker f is trivial. Given $\zeta \in \boldsymbol{\mu}_{n}$, the character χ of Example 4 satisfies $\chi(1)=\zeta$. This shows that f is surjective, and is therefore an isomorphism. Because $\boldsymbol{\mu}_{n} \cong \mathbb{Z} / n \mathbb{Z}$ we have

$$
\widehat{\mathbb{Z} / n \mathbb{Z}} \cong \boldsymbol{\mu}_{n} \cong \mathbb{Z} / n \mathbb{Z}
$$

This finishes the proof.
Theorem 1. Let A be a finite abelian group. Then $A \cong \widehat{A}$.
Proof. Use the Fundamental Theorem to write

$$
A=\bigoplus_{i=1}^{k} C_{i}
$$

where each C_{i} is a finite cyclic group. Lemma 1, Lemma 2 and a quick induction then imply

$$
\widehat{A}=\widehat{\bigoplus_{i=1}^{k} C_{i}} \cong \bigoplus_{i=1}^{k} \widehat{C}_{i} \cong \bigoplus_{i=1}^{k} C_{i}=A
$$

Example 8. As an application, we return to Examples 6 and 7. Let p be an odd prime. The Legendre symbol χ from Example 6 and the sign ϵ from Example 7 both belong to $\left(\widehat{\mathbb{Z} / p \mathbb{Z})^{\times}}\right.$. Because exactly half of the elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$are perfect squares, χ is nontrivial, i.e. $\operatorname{im} \chi=\{ \pm 1\}$. We claim that ϵ is also nontrivial.

To prove this, we need a nontrivial result from number theory. Specifically, for any odd prime p the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic. Specific generators are not easy to identify in general, but all we need to know is that one exists. Write $(\mathbb{Z} / p \mathbb{Z})^{\times}=\langle r\rangle$. Then $|r|=\left|(\mathbb{Z} / p \mathbb{Z})^{\times}\right|=$ $p-1$. By homework exercise 10.1 .3 we then have

$$
\epsilon(r)=(-1)^{(p-1+1)(p-1) /(p-1)}=(-1)^{p}=-1,
$$

since p is odd. In particular, this shows that $-1 \in \mathrm{im}$, which proves that ϵ is nontrivial.
Now let $a \in\left(\widehat{\mathbb{Z} / p \mathbb{Z})^{x}} \times\right.$. Then by the definition of character multiplication

$$
\chi^{2}(a)=(\chi(a))^{2}=(\pm 1)^{2}=1=\chi_{0}(a) \Rightarrow \chi^{2}=\chi_{0} .
$$

Since χ is nontrivial, this shows that $|\chi|=2$. An identical computation with ϵ shows that $|\epsilon|=2$. Because $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic of order $p-1$, Lemma 2 implies that $\left(\widehat{\mathbb{Z} / p \mathbb{Z})^{\times}} \times\right.$is also cyclic of order $p-1$. Recall that a finite cyclic group has a unique subgroup of any allowable size (dividing the order of the group). Since $p-1$ is even, this tells us that $(\widehat{\mathbb{Z} / p \mathbb{Z}})^{\times}$has a unique subgroup of order 2 . But both χ and ϵ generate such a subgroup, by the computations above. Hence

$$
\chi=\epsilon
$$

That is, the Legendre symbol, which is essentially the indicator function for the subgroup of squares in $(\mathbb{Z} / p \mathbb{Z})^{\times}$, is the same as the permutation sign character on $(\mathbb{Z} / p \mathbb{Z})^{\times}$. So the way in which $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$permutes the elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$determines whether or not the congruence $x^{2} \equiv a(\bmod p)$ has a solution!

