
Characters of Finite Abelian Groups

R. C. Daileda

Let A be an (additive) abelian group. A character of A is a homomorphism

χ : A→ C×.

Because A is additive and C× is multiplicative, this means that

χ(a+ b) = χ(a)χ(b)

for all a, b ∈ A. If A happens to be multiplicative, we instead have

χ(ab) = χ(a)χ(b)

for all a, b ∈ A. It should always be clear from context which of these relations defines χ to
be a character of A.

Example 1. For any a ∈ C, define χ : R → C× by

χ(x) = eax.

Then χ is a character of R.

Example 2. Define χ : R× → C× by

χ(x) =
x

|x|
.

Then χ is a character of R×. The same definition also yields a character of C× if we allow
x to be complex.

Example 3. If f : A→ B is a homomorphism of abelian groups and χ is a character of B,
then the composition χ ◦ f is a character of A, since the composition of homomorphisms is
a homomorphism.

Example 4. Let n ∈ N and choose ζ ∈ C× satisfying ζn = 1 (an nth root of unity). Define
ψ : Z → C× by ψ(m) = ζm. Then ψ is a character of Z. Let mZ = kerψ. By the First
Isomorphism Theorem ψ yields a character ψ : Z/mZ → C×. If a ∈ nZ, so that a = nk,
then

ψ(a) = ζa = ζnk = (ζn)k = 1k = 1,

so that nZ ⊆ kerψ = mZ. In general nZ and kerψ need not be the same. However,
as we have seen, the Generalized First Isomorphism Theorem provides a homomorphism
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π : Z/nZ → Z/mZ given by π(a + nZ) = a +mZ. Example 3 then tells us that χ = ψ ◦ π
is a character of Z/nZ. It is given explicitly by

χ(a+ nZ) = ψ(π(a+ nZ)) = ψ(a+mZ) = ψ(a) = ζa.

Example 5. Let A be an additive abelian group and let n ∈ N. The rule a 7→ na defines a
surjective homomorphism A → nA whose kernel is clearly the n-torsion subgroup A[n]. So
by the First Isomorphism Theorem we have

A/A[n] ∼= nA.

If A is finite, this implies |nA| = |A/A[n]| = |A|/|A[n]|, so that [A : nA] = |A|/|nA| = |A[n]|.

If A is multiplicative, then nA becomes the set (subgroup) An = {an | a ∈ A} of nth
powers in A, and the preceding computation shows that [A : An] = |An|, where An = {a ∈
A | an = e} is the subgroup of “nth roots of e” in A.

Example 6. Let p be an odd prime and let A = (Z/pZ)×. Take n = 2 in the preceding
example. The square roots of 1 in (Z/pZ)× satisfy x2 ≡ 1 (mod p), which is is equivalent to
x2 − 1 ≡ 0 (mod p). Since x2 − 1 = (x− 1)(x+ 1), we find that x2 − 1 ≡ 0 (mod p) if and
only if p|(x− 1)(x+1). Because p is prime, this happens if and only if p|x− 1 or p|x+1, i.e.
x ≡ ±1 (mod p). Since 1 ̸≡ −1 (mod p) (why?), this means that ±1 are the two distinct
square roots of 1 in (Z/pZ)×.

Example 5 now tells us that the subgroup T of squares in (Z/pZ)× has index |{±1}| = 2 in
(Z/pZ)×. So (Z/pZ)×/T = {T, ϵT} ∼= {±1}. Composing this isomorphism with the natural
surjection yields a character χ : (Z/pZ)× → {±1} called the Legendre symbol. Notice that
χ(a) = 1 if and only if aT is the trivial coset T , which is equivalent to a ∈ T . Likewise,
χ(a) = −1 if and only if aT = ϵT or a ∈ ϵT . We conclude that

χ(a) =

{
1 if a is a square in (Z/pZ)×,

−1 otherwise.

The traditional notation for the Legendre symbol is

χ(a) =

(
a

p

)
.

If q is another odd prime, then gcd(q, p) = 1 so that we may view q ∈ (Z/pZ)× and

p ∈ (Z/qZ)×. There is a remarkable relationship between the Legendre symbols
(

p
q

)
and(

q
p

)
, discovered by Euler and Legendre and first proven by Gauss in 1801, known as the Law

of Quadratic Reciprocity, which states that(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

2



That is, for odd primes p ̸= q, whether or not p is a square modulo q depends on whether
or not q is a square modulo p! Mathematicians have long been fascinated with the Law of
Quadratic Reciprocity, and there are literally hundreds of different published proofs.

Example 7. Let G be a finite group of order n. We have seen previously that a 7→ λa
defines a monomorphism λ : G → Perm(G). If we fix an isomorphism f : Perm(G) → Sn,
then f ◦ λ is an embedding of G into Sn. So we may assume G ≤ Sn. The sign then
determines a homomorphism ϵ : G → {±1}. The sign of a ∈ G tells you whether or not
left multiplication by a is an even or odd permutation of G. Since {±1} ≤ C×, when G is
abelian ϵ is a character of G.

Let A be an additive abelian group. Let Â denote the set of all characters of A. If

χ, ψ ∈ Â, then the function χψ : A→ C× defined by (χψ)(a) = χ(a)ψ(a) for a ∈ A is easily

seen to be another character of A. This yields a binary operation on Â, which makes Â into

a group called the dual of A. The identity element in Â is the trivial character, which is just

the trivial homomorphism defined by χ0(a) = 1 for all a ∈ A. The inverse of χ ∈ Â is given
by χ−1(a) = 1/χ(a) = χ(a)−1 for all a ∈ A.

The passage from an abelian group to its dual “reverses arrows” (in the language of

category theory, A 7→ Â is a cofunctor). Suppose that A and B are abelian groups and we

have a homomorphism f : A→ B. Given χ ∈ B̂, the composition χ ◦ f belongs to Â. If we

define f̂ : B̂ → Â by f̂(χ) = χ ◦ f , then it is easy to see that f̂ is a homomorphism. We will

call f̂ the homomorphism dual to f .

An important feature of finite abelian groups is that they are self-dual. That is, for any
finite abelian group A one has

A ∼= Â. (1)

We will prove this as an application of the Fundamental Theorem of Finite Abelian Groups.
Recall that the Fundamental Theorem states that every finite abelian group is a direct sum
of cyclic groups. Our proof, therefore, will consist of two parts. We will show that the
operations of direct sum and dualizing commute, so that the dual of a direct sum is the
direct sum of the duals of the individual summands. Then we will show that every finite
cyclic group is self-dual. The result (1) then follows immediately.

Lemma 1. Let A and B be abelian groups. Then

Â⊕B ∼= Â⊕ B̂.

Sketch of Proof. Let πA : A ⊕ B → A be projection onto the first coordinate, πA(a, b) = a,
and let iA : A→ A⊕B be the “inclusion” iA(a) = (a, 0). Both are homomorphisms. Define

πB and iB similarly. We then have the dual maps π̂A : Â → Â⊕B, îA : Â⊕B → Â,

π̂B : B̂ → Â⊕B and îB : Â⊕B → B̂. We “add” these to get homomorphisms

π̂A ⊕ π̂B : Â⊕ B̂ → Â⊕B,

given by (π̂A ⊕ π̂B)(χ, ψ) = π̂A(χ)π̂B(ψ), and

îA ⊕ îB : Â⊕B → Â⊕ B̂,
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given by (îA ⊕ îB)(χ) = (îA(χ), îB(χ)). It is straightforward to check that these maps are
inverse isomorphisms, proving the lemma. The details are left to the reader.

Lemma 2. If C is a finite cyclic group, then C ∼= Ĉ.

Sketch of Proof. We may assume C = Z/nZ for some n ∈ N. Let µn ≤ C× denote the group

of nth roots of unity. Given χ ∈ Ẑ/nZ, we have χ(1)n = χ(n · 1) = χ(n) = χ(0) = 1, so that

χ(1) ∈ µn. It is then easy to see that χ 7→ χ(1) defines a homomorphism f : Ẑ/nZ → µn.
Because 1 generates Z/nZ, χ is trivial if and only if χ(1) = 1. This means that ker f is
trivial. Given ζ ∈ µn, the character χ of Example 4 satisfies χ(1) = ζ. This shows that f is
surjective, and is therefore an isomorphism. Because µn

∼= Z/nZ we have

Ẑ/nZ ∼= µn
∼= Z/nZ.

This finishes the proof.

Theorem 1. Let A be a finite abelian group. Then A ∼= Â.

Proof. Use the Fundamental Theorem to write

A =
k⊕

i=1

Ci,

where each Ci is a finite cyclic group. Lemma 1, Lemma 2 and a quick induction then imply

Â =
k̂⊕

i=1

Ci
∼=

k⊕
i=1

Ĉi
∼=

k⊕
i=1

Ci = A.

Example 8. As an application, we return to Examples 6 and 7. Let p be an odd prime. The

Legendre symbol χ from Example 6 and the sign ϵ from Example 7 both belong to ̂(Z/pZ)×.
Because exactly half of the elements of (Z/pZ)× are perfect squares, χ is nontrivial, i.e.
imχ = {±1}. We claim that ϵ is also nontrivial.

To prove this, we need a nontrivial result from number theory. Specifically, for any odd
prime p the group (Z/pZ)× is cyclic. Specific generators are not easy to identify in general,
but all we need to know is that one exists. Write (Z/pZ)× = ⟨r⟩. Then |r| = |(Z/pZ)×| =
p− 1. By homework exercise 10.1.3 we then have

ϵ(r) = (−1)(p−1+1)(p−1)/(p−1) = (−1)p = −1,

since p is odd. In particular, this shows that −1 ∈ im, which proves that ϵ is nontrivial.

Now let a ∈ ̂(Z/pZ)×. Then by the definition of character multiplication

χ2(a) = (χ(a))2 = (±1)2 = 1 = χ0(a) ⇒ χ2 = χ0.
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Since χ is nontrivial, this shows that |χ| = 2. An identical computation with ϵ shows that

|ϵ| = 2. Because (Z/pZ)× is cyclic of order p−1, Lemma 2 implies that ̂(Z/pZ)× is also cyclic
of order p− 1. Recall that a finite cyclic group has a unique subgroup of any allowable size

(dividing the order of the group). Since p−1 is even, this tells us that ̂(Z/pZ)× has a unique
subgroup of order 2. But both χ and ϵ generate such a subgroup, by the computations above.
Hence

χ = ϵ.

That is, the Legendre symbol, which is essentially the indicator function for the subgroup
of squares in (Z/pZ)×, is the same as the permutation sign character on (Z/pZ)×. So the
way in which a ∈ (Z/pZ)× permutes the elements of (Z/pZ)× determines whether or not the
congruence x2 ≡ a (mod p) has a solution!
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