Congruence, Cosets and Lagrange’s Theorem
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Congruences in Groups

Let n € Ny. Given integers a and b one says that a is congruent to b modulo n provided
a — b is divisible by n. We denote this relationship by a = b (mod n). It is well known
that congruence modulo n is an equivalence relation on Z that respects the binary operation
(addition) used to define it. A closer look at the condition a = b (mod n) reveals that
congruence modulo n can be defined in entirely group theoretic terms, and can therefore be
generalized in a very natural way to arbitrary groups.

Since nla — b if and only if a — b = nk for some k € Z, we find that we can equivalently
formulate congruence mod n as

a=b (modn) < a—benZ (1)

Notice that nZ is a subgroup of Z. In fact, every subgroup of Z has this form. Therefore, up
to the use of additive notation, we can generalize congruence modulo n in Z to an arbitrary
group G as follows. First we replace nZ by a subgroup H < (. Because G need not be
abelian, the additive expression a — b has two possible multiplicative reformulations: ab™?
and b~'a. We choose the latter and define (left) congruence modulo H by

a=b (mod H) <= b lacH fora,becq.

Our choice here is more or less arbitrary, and every result that we prove for left congruence
modulo H can also be proven, mutatis mutandis, using the condition ab~! € H instead. We
will therefore be content to only state (without proof) the “right handed” analogues of our
main results.

Theorem 1. If G is a group and H < G, then left congruence modulo H is an equivalence
relation on G.

Proof. Let a,b,c € G. Since a 'a = ¢ € H, we have a = a (mod H), proving that con-
gruence modulo H is reflexive. If b~'a € H, then a b = (b~'a)™' € H since H is a
group. That is, a = b (mod H) implies b = a (mod H), and we conclude that congruence
modulo H is symmetric. Finally, suppose a = b (mod H) and b = ¢ (mod H), so that
b='a € H and ¢ 'b € H. Since H is closed under the ambient binary operation, we have
cla = (c7'b)(b71a) € H, so that a = ¢ (mod H). This proves that congruence modulo H

is transitive, and completes the proof of Theorem 1. O

We remark that Theorem 1 remains true if we replace left congruence modulo H with
right congruence, which for a,b € G is defined by the analogous condition ab™' € H. It



should be noted, however, that if G is nonabelian, then these two equivalence relations are
not the same, in general.

Example 1. If G is the dihedral group D,, (n > 3), f € D,, is any flip and H = (f) = {e, f}
then right and left congruence modulo H are not the same. To see why, let » € D,, be a
rotation of order n. Set s = rf. Thenr~'s = f € H so that s =r (mod H). However, since
fr=r"1f we have rfr = f and hence rf = fr='. Thus sr™' =rfr=! = r’f ¢ H (since
n > 3). So s is not right congruent to r modulo H.

On the other hand, if H = (r) and s,t € G, then t~'s € H if and only if t s is a rotation.
This occurs if and only if s and ¢ are either both rotations or are both flips (otherwise ¢~ 's
must be a flip). The exact same reasoning applies when st~ € H, which shows that left and
right congruence modulo H coincide in this case.

Example 2. If (G is abelian and H < G, then left and right congruence modulo H always
agree, since b~'a = ab~! for all a,b € G. This is the case when G = Z and H = nZ, for
instance.

Cosets

Given a group G and a subgroup H < G, the equivalence classes in G under congruence

modulo H are called (left) cosets of H. These are easy to describe. Given a € G, its coset is
a={bcG|b=a (mod H)} ={beG|la'be H} ={be G|bcaH} = aH,

where

aH :={ah|h € H},

as the notation is meant to suggest. Note that aH is just the image of H under the left
translation A\, : G — G given by z + az. Since ), is a bijection, this implies that

|H| = |aH| for all a € G.
We also see that
aH=eH=H <= a=e¢ (mod H) <= a=c¢ 'ac€ H.
In other words, H itself is the coset of the identity.

The collection of all (left) cosets of H in G (a subset of P(G)) is called the associated
coset space and is denoted G/H. In light of the description of cosets just given we have

G/H = {aH |a € G}.

Taking into account well known properties of equivalence classes, we arrive at the following
list of fundamental properties of cosets.



Theorem 2. Let G be a group and let H < G. Then:

(a) For all a,b € G, either aH =bH or aH Nb0H = @.
(b) The coset space G/H is a partition of G. That is, G is the disjoint union of the (left)

cosets of H:
G = H aH!
aHeG/H

(¢) aH = H if and only if a € H.
(d) For alla € G, |aH| = |H]|.

Proof. We have already observed (c) and (d). Because congruence modulo H is an equiva-
lence relation on G, its equivalence classes (cosets) are pairwise disjoint and their union is
G. Since the equivalence class of a € G is precisely the coset aH, parts (a) and (b) now
follow at once. ]

Under right congruence modulo H, the equivalence classes in G are right cosets of H,
which for a € G have the form
Ha={ha|h € H}.

The right coset space is sometimes denoted H \ GG, and the properties of left cosets given in
Theorem 2 hold just as well for the members of H \ G.

Example 3. In the case that G = (Z,+) and H = nZ, the cosets of H have the form
a+nZ={a+kn|lkeZ}={..,a—3n,a—2n,a—n,a,a+n,a+2n,a+3n,...},

and are called congruence classes or arithmetic progressions. The term “arithmetic” refers
to the fact that successive members of a +nZ have a common difference, namely n. If we use
the division algorithm to write a = gn + r with r € Z, = {0,1,2,...,n — 1}, then n divides
a—r, so that a = r (mod n). Therefore every congruence class has the form r+nZ for some
r € Z,. Because two distinct members of Z, can differ by at most n — 1, their difference
cannot be divisible by n. That is, two distinct members of Z,, cannot be congruent modulo
n. This implies that the congruence classes r + nZ, r € Z,, must all be distinct. So we see
that we have a bijection
¢: 2y — L/nZ,
r =1+ n.

In particular, |Z/nZ| = |Z,| = n.

Example 4. Let G = D,, and H = (fy) = {e, fo} where fo € D, is any fixed flip. If
r € D, is any rotation, then rH = {r, f}, where f is the flip f =rfy. If f € D,, is any flip,
then fH = {f,r}, where r is the rotation r = ffy. So every left coset of H has the form
{r,f} = rH = fH, where r is a rotation, f is a flip, and the two are related by r = f f,.
Since there are n rotations in D,, and each coset of H contains exactly one of them, we
conclude that |D,,/H| = n.

IThe symbol [ [ denotes the disjoint union of a family of sets.



On the other hand, similar reasoning shows that the right cosets of H also have the form
Hr = Hf = {r, f}, but in this case r and f must be related by r = fof. Nonetheless, note
that we again have |H \ D,| = n. As we shall see, this is not a coincidence.

Lagrange’s Theorem
In general, the number of (left) cosets of a subgroup H of a group G is called the index of
H in G and is denoted [G : H]. Thus,

(G H] = |G/H],

since G/H is the coset space. When G is infinite, the index [G : H] can be finite or infinite,
depending on G and H. For instance, Z is infinite, but we have just finished showing that

[Z : nZ) = n.
On the other hand, one can show that the map
St — C*/RT,
2z 2RT,
is a bijection, so that [C* : R*] is (uncountably) infinite.

When G is finite, however, [G : H| must also be finite (it cannot exceed |G|), and Theorem
2 has a powerful corollary.

Theorem 3 (Lagrange). If G is a finite group and H < G, then
G| =[G : H]|H].
In particular, |H| divides |G)|.

Proof. Let n =[G : H| and let a1 H,asH, ..., a,H be the distinct members (cosets) of G/H.
By Theorem 2 we have

G=[JaH = |G=) |uH|=) |H|=n|H|=[G:H|H|.
=1 =1 i=1
]

Lagrange’s Theorem itself has a number of important corollaries. If G is finite, H < G,

and we utilize right cosets of H instead of left cosets in Lagrange’s theorem, the same proof
shows that |G| = |H \ G| |H|. Thus

|H\G|=%:[G:H1:\G/H|.

In other words:



Corollary 1. Let G be a finite group and H < G. The number of right cosets of H in G 1is
the same as the number |G : H] of left cosets of H in G.
Example 5. Returning to Example 4, Corollary 1 immediately tells us that

|D,|  2n
= — =N
=2

|Dn/H| = [H\ D,| =

in agreement with our earlier computations.

We emphasize that although [G : H| counts both the left and the right cosets of G, it is
not generally true that every left coset of H is equal to a right coset. Subgroups satisfying
aH = Ha for all a € G are called normal and are of particular importance in the next
section.

The next corollary generalizes a fact that we have so far only succeeded in proving for
finite abelian groups.

Corollary 2. Let G be a finite group and let a € G. Then |a| divides |G)|.

Proof. Let H = (a) < G. Since |{a)| = |a|, the conclusion follows from Lagrange’s Theorem.
[l

Lagrange’s theorem shows that just the size of a finite group puts certain limitations on its
internal structure. The next corollary is a particularly strong example of this phenomenon.
Corollary 3. Let G be a finite group. If |G| is prime, then G is cyclic. In particular, G is

generated by any of its nonidentity elements.

Proof. Suppose |G| is prime. Choose a € G so that a # e. Then H = (a) is nontrivial and
G| =[G - H][H],
by Lagrange’s theorem. Since |G| is prime and |H| # 1, this implies |H| = |G| and [G :
H] =1. Hence G = H = (a). O
Our final corollary generalizes Lagrange’s theorem to a tower of subgroups K < H < G.

Corollary 4. Let G be a finite group and let K < H < G be a tower of subgroups. Then
G:K|=|G: H]|[H: K]

Proof. According to Lagrange’s theorem we have

R PILSA B (< .
G K] = [ = 1 e = (G U K,



Corollary 4 states that the index is multiplicative in towers. Using the tower {e} < H < G,
multiplicativity of the index implies that

Gl =[G :{e}] =[G : H|[H : {e}] = [G: H]|H].

This means that Corollary 4 includes the original statement of Lagrange’s theorem as a
special case.

Example 6. Let G be a group of order p, where p is prime, and let H be a nontrivial
subgroup of G. Then H contains a nonidentity element of G, which must generate G by
Corollary 3. It follows that G < H < G, so that H = G. It follows that a group of prime
order has no nontrivial proper subgroups.

Example 7. Let G be a finite group. Suppose that p is a prime dividing |G|, and that H
and K are subgroups of G with |H| = |K| = p. Let J = HN K, which is a subgroup of both
H and K. If J is nontrivial, then J = H and J = K by the preceding exercise. Therefore
H = K. This proves that any two subgroups of G with order p share only the identity or
are identical.



