Congruence, Cosets and Lagrange's Theorem

R. C. Daileda

Congruences in Groups

Let $n \in \mathbb{N}_{0}$. Given integers a and b one says that a is congruent to b modulo n provided $a-b$ is divisible by n. We denote this relationship by $a \equiv b(\bmod n)$. It is well known that congruence modulo n is an equivalence relation on \mathbb{Z} that respects the binary operation (addition) used to define it. A closer look at the condition $a \equiv b(\bmod n)$ reveals that congruence modulo n can be defined in entirely group theoretic terms, and can therefore be generalized in a very natural way to arbitrary groups.

Since $n \mid a-b$ if and only if $a-b=n k$ for some $k \in \mathbb{Z}$, we find that we can equivalently formulate congruence $\bmod n$ as

$$
\begin{equation*}
a \equiv b(\bmod n) \Longleftrightarrow a-b \in n \mathbb{Z} . \tag{1}
\end{equation*}
$$

Notice that $n \mathbb{Z}$ is a subgroup of \mathbb{Z}. In fact, every subgroup of \mathbb{Z} has this form. Therefore, up to the use of additive notation, we can generalize congruence modulo n in \mathbb{Z} to an arbitrary group G as follows. First we replace $n \mathbb{Z}$ by a subgroup $H<G$. Because G need not be abelian, the additive expression $a-b$ has two possible multiplicative reformulations: $a b^{-1}$ and $b^{-1} a$. We choose the latter and define (left) congruence modulo H by

$$
a \equiv b(\bmod H) \Longleftrightarrow b^{-1} a \in H \quad \text { for } a, b \in G .
$$

Our choice here is more or less arbitrary, and every result that we prove for left congruence modulo H can also be proven, mutatis mutandis, using the condition $a b^{-1} \in H$ instead. We will therefore be content to only state (without proof) the "right handed" analogues of our main results.

Theorem 1. If G is a group and $H<G$, then left congruence modulo H is an equivalence relation on G.

Proof. Let $a, b, c \in G$. Since $a^{-1} a=e \in H$, we have $a \equiv a(\bmod H)$, proving that congruence modulo H is reflexive. If $b^{-1} a \in H$, then $a^{-1} b=\left(b^{-1} a\right)^{-1} \in H$ since H is a group. That is, $a \equiv b(\bmod H)$ implies $b \equiv a(\bmod H)$, and we conclude that congruence modulo H is symmetric. Finally, suppose $a \equiv b(\bmod H)$ and $b \equiv c(\bmod H)$, so that $b^{-1} a \in H$ and $c^{-1} b \in H$. Since H is closed under the ambient binary operation, we have $c^{-1} a=\left(c^{-1} b\right)\left(b^{-1} a\right) \in H$, so that $a \equiv c(\bmod H)$. This proves that congruence modulo H is transitive, and completes the proof of Theorem 1.

We remark that Theorem 1 remains true if we replace left congruence modulo H with right congruence, which for $a, b \in G$ is defined by the analogous condition $a b^{-1} \in H$. It
should be noted, however, that if G is nonabelian, then these two equivalence relations are not the same, in general.
Example 1. If G is the dihedral group $D_{n}(n \geq 3), f \in D_{n}$ is any flip and $H=\langle f\rangle=\{e, f\}$ then right and left congruence modulo H are not the same. To see why, let $r \in D_{n}$ be a rotation of order n. Set $s=r f$. Then $r^{-1} s=f \in H$ so that $s \equiv r(\bmod H)$. However, since $f r=r^{-1} f$ we have $r f r=f$ and hence $r f=f r^{-1}$. Thus $s r^{-1}=r f r^{-1}=r^{2} f \notin H$ (since $n \geq 3$). So s is not right congruent to r modulo H.

On the other hand, if $H=\langle r\rangle$ and $s, t \in G$, then $t^{-1} s \in H$ if and only if $t^{-1} s$ is a rotation. This occurs if and only if s and t are either both rotations or are both flips (otherwise $t^{-1} s$ must be a flip). The exact same reasoning applies when $s t^{-1} \in H$, which shows that left and right congruence modulo H coincide in this case.

Example 2. If G is abelian and $H<G$, then left and right congruence modulo H always agree, since $b^{-1} a=a b^{-1}$ for all $a, b \in G$. This is the case when $G=\mathbb{Z}$ and $H=n \mathbb{Z}$, for instance.

Cosets

Given a group G and a subgroup $H<G$, the equivalence classes in G under congruence modulo H are called (left) cosets of H. These are easy to describe. Given $a \in G$, its coset is

$$
\bar{a}=\{b \in G \mid b \equiv a(\bmod H)\}=\left\{b \in G \mid a^{-1} b \in H\right\}=\{b \in G \mid b \in a H\}=a H,
$$

where

$$
a H:=\{a h \mid h \in H\},
$$

as the notation is meant to suggest. Note that $a H$ is just the image of H under the left translation $\lambda_{a}: G \rightarrow G$ given by $x \mapsto a x$. Since λ_{a} is a bijection, this implies that

$$
|H|=|a H| \quad \text { for all } a \in G .
$$

We also see that

$$
a H=e H=H \Longleftrightarrow a \equiv e(\bmod H) \Longleftrightarrow a=e^{-1} a \in H
$$

In other words, H itself is the coset of the identity.
The collection of all (left) cosets of H in G (a subset of $\mathcal{P}(G)$) is called the associated coset space and is denoted G / H. In light of the description of cosets just given we have

$$
G / H=\{a H \mid a \in G\} .
$$

Taking into account well known properties of equivalence classes, we arrive at the following list of fundamental properties of cosets.

Theorem 2. Let G be a group and let $H<G$. Then:
(a) For all $a, b \in G$, either $a H=b H$ or $a H \cap b H=\varnothing$.
(b) The coset space G / H is a partition of G. That is, G is the disjoint union of the (left) cosets of H :

$$
G=\coprod_{a H \in G / H} a H \cdot{ }^{1}
$$

(c) $a H=H$ if and only if $a \in H$.
(d) For all $a \in G,|a H|=|H|$.

Proof. We have already observed (c) and (d). Because congruence modulo H is an equivalence relation on G, its equivalence classes (cosets) are pairwise disjoint and their union is G. Since the equivalence class of $a \in G$ is precisely the coset $a H$, parts (a) and (b) now follow at once.

Under right congruence modulo H, the equivalence classes in G are right cosets of H, which for $a \in G$ have the form

$$
H a=\{h a \mid h \in H\} .
$$

The right coset space is sometimes denoted $H \backslash G$, and the properties of left cosets given in Theorem 2 hold just as well for the members of $H \backslash G$.
Example 3. In the case that $G=(\mathbb{Z},+)$ and $H=n \mathbb{Z}$, the cosets of H have the form

$$
a+n \mathbb{Z}=\{a+k n \mid k \in \mathbb{Z}\}=\{\ldots, a-3 n, a-2 n, a-n, a, a+n, a+2 n, a+3 n, \ldots\},
$$

and are called congruence classes or arithmetic progressions. The term "arithmetic" refers to the fact that successive members of $a+n \mathbb{Z}$ have a common difference, namely n. If we use the division algorithm to write $a=q n+r$ with $r \in \mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$, then n divides $a-r$, so that $a \equiv r(\bmod n)$. Therefore every congruence class has the form $r+n \mathbb{Z}$ for some $r \in \mathbb{Z}_{n}$. Because two distinct members of \mathbb{Z}_{n} can differ by at most $n-1$, their difference cannot be divisible by n. That is, two distinct members of \mathbb{Z}_{n} cannot be congruent modulo n. This implies that the congruence classes $r+n \mathbb{Z}, r \in \mathbb{Z}_{n}$, must all be distinct. So we see that we have a bijection

$$
\begin{aligned}
\phi: \mathbb{Z}_{n} & \rightarrow \mathbb{Z} / n \mathbb{Z}, \\
r & \mapsto r+n \mathbb{Z} .
\end{aligned}
$$

In particular, $|\mathbb{Z} / n \mathbb{Z}|=\left|\mathbb{Z}_{n}\right|=n$.

Example 4. Let $G=D_{n}$ and $H=\left\langle f_{0}\right\rangle=\left\{e, f_{0}\right\}$ where $f_{0} \in D_{n}$ is any fixed flip. If $r \in D_{n}$ is any rotation, then $r H=\{r, f\}$, where f is the flip $f=r f_{0}$. If $f \in D_{n}$ is any flip, then $f H=\{f, r\}$, where r is the rotation $r=f f_{0}$. So every left coset of H has the form $\{r, f\}=r H=f H$, where r is a rotation, f is a flip, and the two are related by $r=f f_{0}$. Since there are n rotations in D_{n} and each coset of H contains exactly one of them, we conclude that $\left|D_{n} / H\right|=n$.

[^0]On the other hand, similar reasoning shows that the right cosets of H also have the form $H r=H f=\{r, f\}$, but in this case r and f must be related by $r=f_{0} f$. Nonetheless, note that we again have $\left|H \backslash D_{n}\right|=n$. As we shall see, this is not a coincidence.

Lagrange's Theorem

In general, the number of (left) cosets of a subgroup H of a group G is called the index of H in G and is denoted $[G: H]$. Thus,

$$
[G: H]=|G / H|,
$$

since G / H is the coset space. When G is infinite, the index $[G: H]$ can be finite or infinite, depending on G and H. For instance, \mathbb{Z} is infinite, but we have just finished showing that

$$
[\mathbb{Z}: n \mathbb{Z}]=n
$$

On the other hand, one can show that the map

$$
\begin{aligned}
S^{1} & \rightarrow \mathbb{C}^{\times} / \mathbb{R}^{+} \\
z & \mapsto z \mathbb{R}^{+}
\end{aligned}
$$

is a bijection, so that $\left[\mathbb{C}^{\times}: \mathbb{R}^{+}\right]$is (uncountably) infinite.
When G is finite, however, $[G: H]$ must also be finite (it cannot exceed $|G|$), and Theorem 2 has a powerful corollary.

Theorem 3 (Lagrange). If G is a finite group and $H<G$, then

$$
|G|=[G: H]|H| .
$$

In particular, $|H|$ divides $|G|$.
Proof. Let $n=[G: H]$ and let $a_{1} H, a_{2} H, \ldots, a_{n} H$ be the distinct members (cosets) of G / H. By Theorem 2 we have

$$
G=\coprod_{i=1}^{n} a_{i} H \Rightarrow|G|=\sum_{i=1}^{n}\left|a_{i} H\right|=\sum_{i=1}^{n}|H|=n|H|=[G: H]|H| .
$$

Lagrange's Theorem itself has a number of important corollaries. If G is finite, $H<G$, and we utilize right cosets of H instead of left cosets in Lagrange's theorem, the same proof shows that $|G|=|H \backslash G||H|$. Thus

$$
|H \backslash G|=\frac{|G|}{|H|}=[G: H]=|G / H|
$$

In other words:

Corollary 1. Let G be a finite group and $H<G$. The number of right cosets of H in G is the same as the number $[G: H]$ of left cosets of H in G.

Example 5. Returning to Example 4, Corollary 1 immediately tells us that

$$
\left|D_{n} / H\right|=\left|H \backslash D_{n}\right|=\frac{\left|D_{n}\right|}{|H|}=\frac{2 n}{2}=n
$$

in agreement with our earlier computations.

We emphasize that although $[G: H]$ counts both the left and the right cosets of G, it is not generally true that every left coset of H is equal to a right coset. Subgroups satisfying $a H=H a$ for all $a \in G$ are called normal and are of particular importance in the next section.

The next corollary generalizes a fact that we have so far only succeeded in proving for finite abelian groups.

Corollary 2. Let G be a finite group and let $a \in G$. Then $|a|$ divides $|G|$.

Proof. Let $H=\langle a\rangle<G$. Since $|\langle a\rangle|=|a|$, the conclusion follows from Lagrange's Theorem.

Lagrange's theorem shows that just the size of a finite group puts certain limitations on its internal structure. The next corollary is a particularly strong example of this phenomenon.

Corollary 3. Let G be a finite group. If $|G|$ is prime, then G is cyclic. In particular, G is generated by any of its nonidentity elements.

Proof. Suppose $|G|$ is prime. Choose $a \in G$ so that $a \neq e$. Then $H=\langle a\rangle$ is nontrivial and

$$
|G|=[G: H]|H|,
$$

by Lagrange's theorem. Since $|G|$ is prime and $|H| \neq 1$, this implies $|H|=|G|$ and $[G$: $H]=1$. Hence $G=H=\langle a\rangle$.

Our final corollary generalizes Lagrange's theorem to a tower of subgroups $K<H<G$.
Corollary 4. Let G be a finite group and let $K<H<G$ be a tower of subgroups. Then

$$
[G: K]=[G: H][H: K] .
$$

Proof. According to Lagrange's theorem we have

$$
[G: K]=\frac{|G|}{|K|}=\frac{|G|}{|H|} \frac{|H|}{|K|}=[G: H][H: K] .
$$

Corollary 4 states that the index is multiplicative in towers. Using the tower $\{e\}<H<G$, multiplicativity of the index implies that

$$
|G|=[G:\{e\}]=[G: H][H:\{e\}]=[G: H]|H| .
$$

This means that Corollary 4 includes the original statement of Lagrange's theorem as a special case.

Example 6. Let G be a group of order p, where p is prime, and let H be a nontrivial subgroup of G. Then H contains a nonidentity element of G, which must generate G by Corollary 3. It follows that $G<H<G$, so that $H=G$. It follows that a group of prime order has no nontrivial proper subgroups.

Example 7. Let G be a finite group. Suppose that p is a prime dividing $|G|$, and that H and K are subgroups of G with $|H|=|K|=p$. Let $J=H \cap K$, which is a subgroup of both H and K. If J is nontrivial, then $J=H$ and $J=K$ by the preceding exercise. Therefore $H=K$. This proves that any two subgroups of G with order p share only the identity or are identical.

[^0]: ${ }^{1}$ The symbol \amalg denotes the disjoint union of a family of sets.

