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Congruences in Groups

Let n ∈ N0. Given integers a and b one says that a is congruent to b modulo n provided
a − b is divisible by n. We denote this relationship by a ≡ b (mod n). It is well known
that congruence modulo n is an equivalence relation on Z that respects the binary operation
(addition) used to define it. A closer look at the condition a ≡ b (mod n) reveals that
congruence modulo n can be defined in entirely group theoretic terms, and can therefore be
generalized in a very natural way to arbitrary groups.

Since n|a− b if and only if a− b = nk for some k ∈ Z, we find that we can equivalently
formulate congruence mod n as

a ≡ b (mod n) ⇐⇒ a− b ∈ nZ. (1)

Notice that nZ is a subgroup of Z. In fact, every subgroup of Z has this form. Therefore, up
to the use of additive notation, we can generalize congruence modulo n in Z to an arbitrary
group G as follows. First we replace nZ by a subgroup H < G. Because G need not be
abelian, the additive expression a − b has two possible multiplicative reformulations: ab−1

and b−1a. We choose the latter and define (left) congruence modulo H by

a ≡ b (mod H) ⇐⇒ b−1a ∈ H for a, b ∈ G.

Our choice here is more or less arbitrary, and every result that we prove for left congruence
modulo H can also be proven, mutatis mutandis, using the condition ab−1 ∈ H instead. We
will therefore be content to only state (without proof) the “right handed” analogues of our
main results.

Theorem 1. If G is a group and H < G, then left congruence modulo H is an equivalence
relation on G.

Proof. Let a, b, c ∈ G. Since a−1a = e ∈ H, we have a ≡ a (mod H), proving that con-
gruence modulo H is reflexive. If b−1a ∈ H, then a−1b = (b−1a)−1 ∈ H since H is a
group. That is, a ≡ b (mod H) implies b ≡ a (mod H), and we conclude that congruence
modulo H is symmetric. Finally, suppose a ≡ b (mod H) and b ≡ c (mod H), so that
b−1a ∈ H and c−1b ∈ H. Since H is closed under the ambient binary operation, we have
c−1a = (c−1b)(b−1a) ∈ H, so that a ≡ c (mod H). This proves that congruence modulo H
is transitive, and completes the proof of Theorem 1.

We remark that Theorem 1 remains true if we replace left congruence modulo H with
right congruence, which for a, b ∈ G is defined by the analogous condition ab−1 ∈ H. It
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should be noted, however, that if G is nonabelian, then these two equivalence relations are
not the same, in general.

Example 1. If G is the dihedral group Dn (n ≥ 3), f ∈ Dn is any flip and H = ⟨f⟩ = {e, f}
then right and left congruence modulo H are not the same. To see why, let r ∈ Dn be a
rotation of order n. Set s = rf . Then r−1s = f ∈ H so that s ≡ r (mod H). However, since
fr = r−1f we have rfr = f and hence rf = fr−1. Thus sr−1 = rfr−1 = r2f ̸∈ H (since
n ≥ 3). So s is not right congruent to r modulo H.

On the other hand, if H = ⟨r⟩ and s, t ∈ G, then t−1s ∈ H if and only if t−1s is a rotation.
This occurs if and only if s and t are either both rotations or are both flips (otherwise t−1s
must be a flip). The exact same reasoning applies when st−1 ∈ H, which shows that left and
right congruence modulo H coincide in this case.

Example 2. If G is abelian and H < G, then left and right congruence modulo H always
agree, since b−1a = ab−1 for all a, b ∈ G. This is the case when G = Z and H = nZ, for
instance.

Cosets

Given a group G and a subgroup H < G, the equivalence classes in G under congruence
modulo H are called (left) cosets of H. These are easy to describe. Given a ∈ G, its coset is

a = {b ∈ G | b ≡ a (mod H)} = {b ∈ G | a−1b ∈ H} = {b ∈ G | b ∈ aH} = aH,

where
aH := {ah |h ∈ H},

as the notation is meant to suggest. Note that aH is just the image of H under the left
translation λa : G → G given by x 7→ ax. Since λa is a bijection, this implies that

|H| = |aH| for all a ∈ G.

We also see that

aH = eH = H ⇐⇒ a ≡ e (mod H) ⇐⇒ a = e−1a ∈ H.

In other words, H itself is the coset of the identity.

The collection of all (left) cosets of H in G (a subset of P(G)) is called the associated
coset space and is denoted G/H. In light of the description of cosets just given we have

G/H = {aH | a ∈ G}.

Taking into account well known properties of equivalence classes, we arrive at the following
list of fundamental properties of cosets.
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Theorem 2. Let G be a group and let H < G. Then:

(a) For all a, b ∈ G, either aH = bH or aH ∩ bH = ∅.

(b) The coset space G/H is a partition of G. That is, G is the disjoint union of the (left)
cosets of H:

G =
∐

aH∈G/H

aH.1

(c) aH = H if and only if a ∈ H.

(d) For all a ∈ G, |aH| = |H|.

Proof. We have already observed (c) and (d). Because congruence modulo H is an equiva-
lence relation on G, its equivalence classes (cosets) are pairwise disjoint and their union is
G. Since the equivalence class of a ∈ G is precisely the coset aH, parts (a) and (b) now
follow at once.

Under right congruence modulo H, the equivalence classes in G are right cosets of H,
which for a ∈ G have the form

Ha = {ha |h ∈ H}.
The right coset space is sometimes denoted H \G, and the properties of left cosets given in
Theorem 2 hold just as well for the members of H \G.

Example 3. In the case that G = (Z,+) and H = nZ, the cosets of H have the form

a+ nZ = {a+ kn | k ∈ Z} = {. . . , a− 3n, a− 2n, a− n, a, a+ n, a+ 2n, a+ 3n, . . .},

and are called congruence classes or arithmetic progressions. The term “arithmetic” refers
to the fact that successive members of a+nZ have a common difference, namely n. If we use
the division algorithm to write a = qn+ r with r ∈ Zn = {0, 1, 2, . . . , n− 1}, then n divides
a−r, so that a ≡ r (mod n). Therefore every congruence class has the form r+nZ for some
r ∈ Zn. Because two distinct members of Zn can differ by at most n − 1, their difference
cannot be divisible by n. That is, two distinct members of Zn cannot be congruent modulo
n. This implies that the congruence classes r + nZ, r ∈ Zn, must all be distinct. So we see
that we have a bijection

ϕ : Zn → Z/nZ,
r 7→ r + nZ.

In particular, |Z/nZ| = |Zn| = n.

Example 4. Let G = Dn and H = ⟨f0⟩ = {e, f0} where f0 ∈ Dn is any fixed flip. If
r ∈ Dn is any rotation, then rH = {r, f}, where f is the flip f = rf0. If f ∈ Dn is any flip,
then fH = {f, r}, where r is the rotation r = ff0. So every left coset of H has the form
{r, f} = rH = fH, where r is a rotation, f is a flip, and the two are related by r = ff0.
Since there are n rotations in Dn and each coset of H contains exactly one of them, we
conclude that |Dn/H| = n.

1The symbol
∐

denotes the disjoint union of a family of sets.
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On the other hand, similar reasoning shows that the right cosets of H also have the form
Hr = Hf = {r, f}, but in this case r and f must be related by r = f0f . Nonetheless, note
that we again have |H \Dn| = n. As we shall see, this is not a coincidence.

Lagrange’s Theorem

In general, the number of (left) cosets of a subgroup H of a group G is called the index of
H in G and is denoted [G : H]. Thus,

[G : H] = |G/H|,

since G/H is the coset space. When G is infinite, the index [G : H] can be finite or infinite,
depending on G and H. For instance, Z is infinite, but we have just finished showing that

[Z : nZ] = n.

On the other hand, one can show that the map

S1 → C×/R+,

z 7→ zR+,

is a bijection, so that [C× : R+] is (uncountably) infinite.

When G is finite, however, [G : H] must also be finite (it cannot exceed |G|), and Theorem
2 has a powerful corollary.

Theorem 3 (Lagrange). If G is a finite group and H < G, then

|G| = [G : H] |H|.

In particular, |H| divides |G|.

Proof. Let n = [G : H] and let a1H, a2H, . . . , anH be the distinct members (cosets) of G/H.
By Theorem 2 we have

G =
n∐

i=1

aiH ⇒ |G| =
n∑

i=1

|aiH| =
n∑

i=1

|H| = n|H| = [G : H] |H|.

Lagrange’s Theorem itself has a number of important corollaries. If G is finite, H < G,
and we utilize right cosets of H instead of left cosets in Lagrange’s theorem, the same proof
shows that |G| = |H \G| |H|. Thus

|H \G| = |G|
|H|

= [G : H] = |G/H|.

In other words:
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Corollary 1. Let G be a finite group and H < G. The number of right cosets of H in G is
the same as the number [G : H] of left cosets of H in G.

Example 5. Returning to Example 4, Corollary 1 immediately tells us that

|Dn/H| = |H \Dn| =
|Dn|
|H|

=
2n

2
= n,

in agreement with our earlier computations.

We emphasize that although [G : H] counts both the left and the right cosets of G, it is
not generally true that every left coset of H is equal to a right coset. Subgroups satisfying
aH = Ha for all a ∈ G are called normal and are of particular importance in the next
section.

The next corollary generalizes a fact that we have so far only succeeded in proving for
finite abelian groups.

Corollary 2. Let G be a finite group and let a ∈ G. Then |a| divides |G|.

Proof. Let H = ⟨a⟩ < G. Since |⟨a⟩| = |a|, the conclusion follows from Lagrange’s Theorem.

Lagrange’s theorem shows that just the size of a finite group puts certain limitations on its
internal structure. The next corollary is a particularly strong example of this phenomenon.

Corollary 3. Let G be a finite group. If |G| is prime, then G is cyclic. In particular, G is
generated by any of its nonidentity elements.

Proof. Suppose |G| is prime. Choose a ∈ G so that a ̸= e. Then H = ⟨a⟩ is nontrivial and

|G| = [G : H] |H|,

by Lagrange’s theorem. Since |G| is prime and |H| ≠ 1, this implies |H| = |G| and [G :
H] = 1. Hence G = H = ⟨a⟩.

Our final corollary generalizes Lagrange’s theorem to a tower of subgroups K < H < G.

Corollary 4. Let G be a finite group and let K < H < G be a tower of subgroups. Then

[G : K] = [G : H] [H : K].

Proof. According to Lagrange’s theorem we have

[G : K] =
|G|
|K|

=
|G|
|H|

|H|
|K|

= [G : H] [H : K].
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Corollary 4 states that the index ismultiplicative in towers. Using the tower {e} < H < G,
multiplicativity of the index implies that

|G| = [G : {e}] = [G : H] [H : {e}] = [G : H] |H|.

This means that Corollary 4 includes the original statement of Lagrange’s theorem as a
special case.

Example 6. Let G be a group of order p, where p is prime, and let H be a nontrivial
subgroup of G. Then H contains a nonidentity element of G, which must generate G by
Corollary 3. It follows that G < H < G, so that H = G. It follows that a group of prime
order has no nontrivial proper subgroups.

Example 7. Let G be a finite group. Suppose that p is a prime dividing |G|, and that H
and K are subgroups of G with |H| = |K| = p. Let J = H ∩K, which is a subgroup of both
H and K. If J is nontrivial, then J = H and J = K by the preceding exercise. Therefore
H = K. This proves that any two subgroups of G with order p share only the identity or
are identical.
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