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For n ∈ N , the permutation group on n symbols is usually defined to be

Sn = Perm({1, 2, 3, . . . , n}),

the group operation being composition of functions. The fact that every member of Sn can
be written as a product of disjoint cycles is essential to understanding the group theoretic
structure of Sn, but the proofs presented in many textbooks are notoriously tedious and
difficult to understand. It turns out that if we slightly generalize the statement “every
member of Sn can be written as a product of disjoint cycles,” it’s possible to give a relatively
short inductive proof. The key observation is that the notion of a cycle makes sense in the
group Perm(S) for any nonempty set S.

Theorem 1. For any nonempty finite set S, every σ ∈ Perm(S) can be written as a product
of disjoint cycles.

Proof. We induct on |S|. Since the only permutation of a singleton set is the identity, which
can be written as a 1-cycle, there is nothing to prove when |S| = 1. Now suppose n > 1
and that every member of Perm(S ′) can be written as a product of disjoint cycles, whenever
1 ≤ |S ′| < n. Let |S| = n and choose σ ∈ Perm(S). There is nothing to prove if σ is the
identity, so we may assume that σ(x) ̸= x for some x ∈ S.

Consider the set
H = {k ∈ Z |σk(x) = x}.

It is easy to see that H < Z. Since Perm(S) is a finite group, σ has finite order m ≥ 1, so
that σm(x) = id(x) = x. Therefore m ∈ H and H is nontrivial. This means that H = rZ
for some r ∈ N. Since σ(x) ̸= x, 1 ̸∈ H which implies r ≥ 2.

Let k, ℓ ∈ Z and suppose that σk(x) = σℓ(x). Then σk−ℓ(x) = x and hence k−ℓ ∈ H = rZ.
That is, k ≡ ℓ (mod r). This implies that

x, σ(x), σ2(x), . . . , σr−1(x)

are pairwise distinct members of S, since the exponents 0, 1, 2, . . . , r− 1 are all distinct mod
r. It follows that

τ = (x σ(x) σ2(x) · · ·σr−1(x))

represents an r-cycle in Perm(S).

Now consider σ′ = τ−1σ. For any 0 ≤ k ≤ r − 1 we have

σ′(σk(x)) = (τ−1σ)(σk(x)) = τ−1(σk+1(x)) = σk(x),
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by the definition of τ . So σ′ fixes x, σ(x), σ2(x), . . . , σr−1(x) and can therefore be viewed as
a permutation of the set S ′ = S \ {x, σ(x), σ2(x), . . . , σr−1(x)}. If S ′ = ∅, then σ′ is the
identity and σ = τ is an r-cycle. Otherwise 1 ≤ |S ′| < |S| and the inductive hypothesis
implies that σ′ = τ1 · · · τk for some disjoint cycles τ1, . . . , τk in Perm(S ′). Since τ is a cycle
disjoint from any cycle in Perm(S ′), it follows that σ = τσ′ = ττ1 · · · τk expresses σ as a
product of disjoint cycles. Since σ was an arbitrary (nonidentity) member of Perm(S), the
result now follows by mathematical induction.
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