Finite Abelian Groups II:
 Finite Abelian p-Groups

R. C. Daileda

Our goal now is to decompose any finite abelian p-group (p a prime) as an internal direct sum of cyclic subgroups. First we nee two lemmas.

Lemma 1. Let A be an additive abelian group and suppose $a \in A$ has order p^{r} where p is prime and $r \geq 0$. Then for any $k \in \mathbb{N}_{0}$:

$$
\left|p^{k} a\right|= \begin{cases}p^{r-k} & \text { if } k \leq r \\ 1 & \text { otherwise }\end{cases}
$$

Proof. We have

$$
\left|p^{k} a\right|=\frac{|a|}{\operatorname{gcd}\left(p^{k},|a|\right)}=\frac{p^{r}}{\operatorname{gcd}\left(p^{k}, p^{r}\right)}=\frac{p^{r}}{p^{\min \{k, r\}}}=p^{r-\min \{k, r\}} .
$$

Now let A be a finite abelian p-group. Choose $a_{1} \in A$ whose order $p^{r_{1}}$ is as large as possible. Let $A_{1}=\left\langle a_{1}\right\rangle$. Then A / A_{1} is a finite abelian p-group and we have the canonical epimorphism $\pi: A \rightarrow A / A_{1}$. Given $b \in A$, because π is a homomorphism, we know that $|\pi(b)|$ in A / A_{1} must divide $|b|$ in A. In order for our argument below to work, we need to know that, in fact, $|b|=|\pi(b)|$. But in general there's nothing to prevent $|b|$ from being strictly larger than $|\pi(b)|$. Fortunately, $\pi(a)=\pi(b)$ for any $a \in b+A_{1}$, so it might be possible to "adjust" b by an element of A_{1} to get $a \in A$ with $|a|=|\pi(a)|$ and $\pi(a)=\pi(b)$. The next lemma shows that this is indeed always possible.
Lemma 2. Let A be a finite abelian p-group, and suppose $a_{1} \in A$ has maximum possible order $p^{r_{1}}$. Set $A_{1}=\left\langle a_{1}\right\rangle$ and let $\pi: A \rightarrow A / A_{1}$ denote the canonical epimorphism. For any $b \in A$, there exists $a \in A$ so that $\pi(a)=\pi(b)$ and $|a|=|\pi(b)|$.

Proof. Let $c \in \pi(b)=b+A_{1}$ so that $\pi(c)=\pi(b)$. Then

$$
p^{r}=|\pi(b)|=|\pi(c)| \quad \text { divides } \quad|c|=p^{s},
$$

which implies that $r \leq s$. Furthermore, since $|\pi(c)|=p^{r}$ in A / A_{1}, we have

$$
A_{1}=p^{r} \pi(c)=\pi\left(p^{r} c\right) \Rightarrow p^{r} c \in A_{1} \Rightarrow p^{r} c=n a_{1}
$$

for some $n \in \mathbb{N}$. Write $n=p^{k} t$ with $k \geq 0$ and $p \nmid t$. Then

$$
\left|t a_{1}\right|=\frac{\left|a_{1}\right|}{\operatorname{gcd}\left(t,\left|a_{1}\right|\right)}=\frac{p^{r_{1}}}{\operatorname{gcd}\left(t, p^{r_{1}}\right)}=p^{r_{1}}
$$

This means we can compute $p^{r} c=n a_{1}=p^{k}\left(t a_{1}\right)$ in two ways using Lemma 1 . On the one hand

$$
\left|p^{r} c\right|=p^{s-\min \{r, s\}}=p^{s-r} \quad \text { since } \quad r \leq s
$$

On the other hand

$$
\left|p^{k}\left(t a_{1}\right)\right|=p^{r_{1}-\min \left\{k, r_{1}\right\}} .
$$

Since both elements have the same order we conclude that

$$
\begin{equation*}
s-r=r_{1}-\min \left\{k, r_{1}\right\} . \tag{1}
\end{equation*}
$$

If $k>r_{1}$, (1) becomes $s-r=0$ or $r=s$. That is, $|c|=p^{s}=p^{r}$. Since $\pi(c)=\pi(b)$, we can take $a=c$ to prove the lemma. If $k \leq r_{1}$, (1) becomes $s-r=r_{1}-k$ or $k-r=r_{1}-s \geq 0$, since $p^{r_{1}}$ is the largest possible order of elements in A, and $|c|=p^{s}$. Therefore $k \geq r$ and we have

$$
p^{r} c=p^{k}\left(t a_{1}\right)=p^{r}\left(p^{k-r} t a_{1}\right)=p^{r} a_{1}^{\prime},
$$

where $a_{1}^{\prime}=p^{k-r} t a_{1} \in A_{1}$, since $p^{k-r} \in \mathbb{N}$. We then have

$$
p^{r}\left(c-a_{1}^{\prime}\right)=0 .
$$

This shows that $\left|c-a_{1}^{\prime}\right|$ divides p^{r}. But we also know that $\left|\pi\left(c-a_{1}^{\prime}\right)\right|=|\pi(c)|=|\pi(b)|=p^{r}$, which shows that $\left|c-a_{1}^{\prime}\right|$ is divisible by p^{r}. We conclude that $a=c-a_{1}^{\prime}$ has order p^{r} and satisfies $\pi(a)=\pi(c)=\pi(b)$, as needed.

Example 1. Assume p is an odd prime and consider the finite abelian p-group $A=(\mathbb{Z} / p \mathbb{Z}) \oplus$ $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$. The element $(1,1)$ has order p^{2}, which is as large as possible, since $A=A\left[p^{2}\right]$. So, in the notation of Lemma 2, we have $a_{1}=(1,1)$ and $A_{1}=\langle(1,1)\rangle$. Since $\left|A / A_{1}\right|=p^{3} / p^{2}=p$, every nontrivial element of A / A_{1} has order p.

The element $b=(1,2)$ does not belong to A_{1}, since $(1,2)=k(1,1)=(k, k)$ would imply $k \equiv 1(\bmod p)$ and $k \equiv 2\left(\bmod p^{2}\right)$, which is impossible. So $b+A_{1}$ has order p in A / A_{1}. However, $(1,2)$ does not have order p in A since $p(1,2)=(p, 2 p)=(0,2 p) \neq(0,0)$. Following the proof of Lemma 1 we write $p b=p(1,2)=(0,2 p)=(2 p, 2 p)=2 p(1,1)=2 p a_{1}$, so that $p\left(b-2 a_{1}\right)=0$. So $a=b-2 a_{1}$ has order p in A and $a \equiv b\left(\bmod A_{1}\right)$.

Theorem 1. Let p be a prime and let A be a finite abelian p-group. Then there is a sequence of positive integers $r_{1} \geq r_{2} \geq \cdots \geq r_{k}$ so that A is the internal direct sum

$$
A=C\left(p^{r_{1}}\right) \oplus C\left(p^{r_{2}}\right) \oplus \cdots \oplus C\left(p^{r_{k}}\right),
$$

where each $C\left(p^{r_{i}}\right)$ is a cyclic subgroup of A of order $p^{r_{i}}$.
Proof. We induct on $|A|$. When $|A|=1, A$ has no nontrivial cyclic subgroups. We may therefore take the sequence $\left\{r_{i}\right\}$ to be empty, since any direct sum indexed by the empty set is understood to be the trivial group. So assume $|A|>1$ and that we have proven the theorem for all finite abelian p-groups of order strictly less than $|A|$. As in Lemma 2, choose $a_{1} \in A$ with $\left|a_{1}\right|=p^{r_{1}}$ as large as possible, and set $A_{1}=\left\langle a_{1}\right\rangle$. Since $\left|A / A_{1}\right|$ is a finite
abelian p-group whose order is less than $|A|$, the inductive hypothesis implies that A / A_{1} is an internal direct sum

$$
\begin{equation*}
A / A_{1}=C\left(p^{r_{2}}\right) \oplus C\left(p^{r_{3}}\right) \oplus \cdots \oplus C\left(p_{k}^{r_{k}}\right) \tag{2}
\end{equation*}
$$

where each $C\left(p^{r_{i}}\right)$ is a cyclic subgroup of A / A_{1} with order $p^{r_{i}}$. For each i write

$$
C\left(p^{r_{i}}\right)=\left\langle b_{i}+A_{1}\right\rangle .
$$

Then $b_{i}+A_{1}$ has order $p^{r_{i}}$ and we can use Lemma 2 to find $a_{i} \in A$ so that $a_{i}+A_{1}=b_{i}+A_{1}$ and $\left|a_{i}\right|=p^{r_{i}}$. In particular, $C\left(p^{r_{i}}\right)=\left\langle a_{i}+A_{1}\right\rangle$ for all i.

We claim that the sum

$$
\begin{equation*}
A_{1} \oplus\left\langle a_{2}\right\rangle \oplus\left\langle a_{3}\right\rangle \oplus \cdots \oplus\left\langle a_{k}\right\rangle \tag{3}
\end{equation*}
$$

is direct. To see why, suppose that

$$
n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{k} a_{k}=0
$$

in A. Apply the canonical epimorphism $\pi: A \rightarrow A / A_{1}$ to obtain

$$
\begin{aligned}
0 & =n_{1} \pi\left(a_{1}\right)+n_{2} \pi\left(a_{2}\right)+\cdots+n_{k} \pi\left(a_{k}\right) \\
& =n_{2}\left(a_{2}+A_{1}\right)+\cdots+n_{k}\left(a_{k}+A_{1}\right) .
\end{aligned}
$$

Because each $C\left(p^{r_{i}}\right)=\left\langle a_{i}+A_{1}\right\rangle$, and the sum of the $C\left(p^{r_{i}}\right)$ is direct, it must be the case that $n_{i}\left(a_{i}+A_{1}\right)=A_{1}$ for all i. Since $\left|a_{i}+A_{1}\right|=p^{r_{i}}$, it follows that $p^{r_{i}}$ divides n_{i} for all i. But we also have $\left|a_{i}\right|=p^{r_{i}}$, so this implies $n_{i} a_{i}=0$ in A. Therefore, the equality

$$
n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{k} a_{k}=0
$$

implies that $n_{i} a_{i}=0$ for all $2 \leq i \leq k$, and therefore $n_{1} a_{1}=0$ as well. This proves the sum (3) is direct.

The final step is to show that A is actually equal to the direct sum. This can be accomplished with a quick counting argument. First of all

$$
\left|\left\langle a_{i}\right\rangle\right|=\left|a_{i}\right|=p^{r_{i}}=\left|C\left(p^{r_{i}}\right)\right|
$$

So by (2) and Lagrange's theorem

$$
\frac{|A|}{\left|A_{1}\right|}=\left|A / A_{1}\right|=\prod_{i=2}^{k}\left|C\left(p_{i}^{r_{i}}\right)\right|=\prod_{i=2}^{k}\left|\left\langle a_{i}\right\rangle\right| .
$$

Therefore

$$
|A|=\left|A_{1}\right| \prod_{i=2}^{k}\left|\left\langle a_{i}\right\rangle\right|=\left|A_{1} \oplus\left\langle a_{2}\right\rangle \oplus\left\langle a_{3}\right\rangle \oplus \cdots \oplus\left\langle a_{k}\right\rangle\right| .
$$

Since the sum on the right is a subgroup of A, this implies that the two groups coincide.
Given a finite abelian p-group A, the tuple $\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ of exponents occurring in the direct sum decomposition of Theorem 1 will be called the type of A. Our final goal is to show
that the type of a finite abelian p-group is unique. That is, if A also has type $\left(s_{1}, s_{2}, \ldots, s_{\ell}\right)$, then

$$
\left(r_{1}, r_{2}, \ldots, r_{k}\right)=\left(s_{1}, s_{2}, \ldots, s_{\ell}\right) .
$$

Equivalently, $k=\ell$ and $r_{i}=s_{i}$ for all i.
Once again we induct on $|A|$. When $|A|=1$ the only possible type is the empty tuple (), which is clearly unique. Now suppose $|A|>1$ and that we have proven the type of any smaller abelian p-group is unique. Write

$$
\begin{aligned}
& \left(r_{1}, r_{2}, \ldots, r_{k}\right)=(r_{1}, r_{2}, \ldots, r_{k-\mu}, \underbrace{1,1, \ldots, 1}_{\mu \text { ones }}) \\
& \left(s_{1}, s_{2}, \ldots, s_{\ell}\right)=(s_{1}, s_{2}, \ldots, s_{\ell-\nu}, \underbrace{1,1, \ldots, 1}_{\nu \text { ones }})
\end{aligned}
$$

where $r_{k-\mu} \geq 2, s_{\ell-\nu} \geq 2$, and we allow $\mu=0$ or $\nu=0$ if necessary. Then $p A$ is a finite abelian p-group of types

$$
\begin{aligned}
& \left(r_{1}-1, r_{2}-1, \ldots, r_{k-\mu}-1\right), \\
& \left(s_{1}-1, s_{2}-1, \ldots, s_{\ell-\nu}-1\right),
\end{aligned}
$$

since $p C\left(p^{r}\right)$ is a cyclic group of order p^{r-1} (why?). Because $|p A|<|A|$ (why?), the inductive hypothesis implies that

$$
\left(r_{1}-1, r_{2}-1, \ldots, r_{k-\mu}-1\right)=\left(s_{1}-1, s_{2}-1, \ldots, s_{\ell-\nu}-1\right)
$$

so that $k-\mu=\ell-\nu=m$ and $r_{i}-1=s_{i}-1$ for $i \leq m$. We then have $r_{i}=s_{i}$ for $i \leq m$ and the order of A is therefore

$$
p^{r_{1}+r_{2}+\cdots+r_{m}+\mu}=p^{s_{1}+s_{2}+\cdots+s_{m}+\nu} .
$$

Because $r_{i}=s_{i}$ for all $i \leq m$, it follows that $\mu=\nu$, and hence $k=\ell$, since $k-\mu=\ell-\nu$. And since $r_{i}=s_{i}=1$ for $i \leq k$, and $k=\ell$, we finally have

$$
\left(r_{1}, r_{2}, \ldots, r_{k}\right)=\left(s_{1}, s_{2}, \ldots, s_{\ell}\right)
$$

as needed. This proves that the type of A is unique, which completes the inductive step and finishes our proof. To summarize:
Theorem 2. Let A be a finite abelian p-group. The exponents $r_{1} \geq r_{2} \geq \cdots \geq r_{k}$ of Theorem 1 are unique.

Because every cyclic group of order n is isomorphic to $\mathbb{Z} / n \mathbb{Z}$, as an immediate corollary to Theorems 1 and 2 we obtain

Corollary 1. Let A be a finite abelian p-group. Then there is a unique sequence of positive integers $r_{1} \geq r_{2} \geq \cdots \geq r_{k}$ so that

$$
A \cong\left(\mathbb{Z} / p^{r_{1}} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / p^{r_{2}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p^{r_{k}} \mathbb{Z}\right)
$$

Notice that if A is an abelian p-group of order p^{e}, and we decompose A as in Corollary 1 , then

$$
p^{e}=|A|=\left|\left(\mathbb{Z} / p^{r_{1}} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / p^{r_{2}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p^{r_{k}} \mathbb{Z}\right)\right|=p^{r_{1}} p^{r_{2}} \cdots p^{r_{k}}=p^{r_{1}+r_{2}+\cdots+r_{k}}
$$

That is,

$$
e=r_{1}+r_{2}+\cdots+r_{k} \quad \text { with } \quad r_{1} \geq r_{2} \geq \cdots \geq r_{k} \geq 1
$$

which is called a partition of e. It follows that:
Corollary 2. The isomorphism classes of abelian p-groups of order p^{e} correspond to the integer partitions of e.

Example 2. Let's classify the finite abelian p-groups of order p^{5}, up to isomorphism. According to Corollary 2, the isomorphismclasses correspond to partitions of $e=5$. These are

$$
(1,1,1,1,1),(2,1,1,1),(2,2,1),(3,1,1),(3,2),(4,1),(5)
$$

and the corresponding groups representing each class are

$$
\begin{aligned}
& (\mathbb{Z} / p \mathbb{Z})^{5}, \quad\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) \oplus(\mathbb{Z} / p \mathbb{Z})^{3}, \quad\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2} \oplus(\mathbb{Z} / p \mathbb{Z}) \\
& \left(\mathbb{Z} / p^{3} \mathbb{Z}\right) \oplus(\mathbb{Z} / p \mathbb{Z})^{2}, \quad\left(\mathbb{Z} / p^{3} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) \\
& \left(\mathbb{Z} / p^{4} \mathbb{Z}\right) \oplus(\mathbb{Z} / p \mathbb{Z}), \quad \mathbb{Z} / p^{5} \mathbb{Z}
\end{aligned}
$$

It is important to note that no two groups in this list can be isomorphic.

