Finite Abelian Groups III:
The Fundamental Theorem
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Let A be a finite abelian group of order
n=pi'--p,
where the p; are distinct primes and e; > 1 for all 7. According to Theorem 2 of Part I, we

have ,
A= Alps), (1)
i=1

where each A[p{’] is a p;-group of order pj. According to Theorem 1 of Part II, for each i

we have N
=P cw). (2)
j=1

where C'(m) denotes a cyclic subgroup of order m, and 7,1 > r;o > -+ > 1 p,.
Because the number of summands k; in (2) can vary with 7, we set

k= max ki7
i

and for any j satisfying k; < j < k we define r;; = 0. Then C(p;”’) = C(p}) = {0} for any
such i and j. Instead of (2) we can then write

k
A = P o),
j=1

since any summand beyond the k" is simply the trivial group. Substituting these modified
decompositions into (1) we obtain
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Because the orders of the cyclic subgroups C(p;*’) for i = 1,2,...¢ are pairwise relatively
prime, their direct sum is again cyclic, of order

d_wa (4)



So we have
where

for each j.

Now for any fixed ¢ and all j < k; we have r; j_1 > r; ;. This continues to hold even if
j > k; since we defined 7; ; = 0 in this case. Hence p,"|p;"’~" for all j. It follows from (4)
that d;|d;_; for all j. We have now arrived at our Fundamental Theorem

Theorem 1 (Fundamental Theorem of Finite Abelian Groups). Let A be a finite abelian
group. There exist unique integers d; > 2 satisfying di|dg_1|-- - |dy so that A is the internal
direct sum

k
A=)
j=1
of cyclic subgroups C(d;) of size d;. The integers d; are called the elementary divisors of A.

At this point we’ve proven every statement in the Fundamental Theorem aside from
the uniqueness of the sequence of elementary divisors. We leave this to the interested and
industrious reader.

Corollary 1. Let A be a finite abelian group. There exist unique integers d; > 2 satisfying
dildi_1| -+ |d1 so that

k
A= z/d;L.
j=1

When we were dealing with classifying finite abelian p-groups of a given order p°, we
found that the exponents in the cyclic factors corresponded to the partitions of e. So by
determining all of the partitions of e we could create a list of the isomorphism classes of
finite abelian p-groups of order p°.

The analogous problem, of classifying all the (general) finite abelian groups with a given
order n, requires us to determine all sequences of elementary divisors d; > 2 so that
dgldi—1|-+-|dy and n = dydy---dg. This can be done using partitions as in the case of
p-groups, but the technique is somewhat more involved. The key idea is to realize that
elementary divisors arose from the sizes of the cyclic summands in the decompositions of the
prime power torsion subgroups, when we reversed the order of the double direct sum in (3).

To see how this works, write out the prime factorization of n as usual:
n=pi -y

For each 4, find the set P; of all partitions (7,1, 7i2, ..., 7k ) of the exponent e;. The possible
sequences of elementary divisors correspond to the tuples (m;) € Py X Py X -+ - x Pp. Given



such a tuple (m;), let k denote the maximum length of any of the 7;. Add zeros as necessary
to the end of each 7; so that all of the resulting modified partitions have common length k.

We then have m; = (r;1,752,...,7) for all i. Finally, set
¢
d; = []»™
i=1
for j =1,2,..., k. The resulting sequence di, ds, . .., d; yields the elementary divisors corre-

sponding to the tuple (m;) of partitions of the exponents ¢;. By running through every tuple
in Py X Py X -+ x Py one obtains all of the possible elementary divisors for the isomorphism
classes of finite abelian groups of order n.

Example 1. Let’s classify the finite abelian groups of order n = 756 = 22337. The
exponents of the prime factors are e; = 2, e; = 3 and e3 = 1. The partitions of 2 are
Py ={(1,1),(2)}, the partitions of 3 are P, = {(1,1,1),(2,1),(3)}, and the partitions of 1
are P = {(1)}. Rather than lengthen these on a case by case basis, we simply note that the
largest length is 3, and add zeros to the shorter partitions to give them length 3, also. This
yields the modified partitions

7)1 = {(17170)7(27070)}7
Py ={(1,1,1),(2,1,0),(3,0,0)},
Py = {(1,0,0)}.

We now choose one partition from each of P;, P, and Ps in every possible way to construct
the elementary divisors. This yields:

(1,1,0),(1,1,1),(1,0,0) ~ dy =2'3'7' =42, dy =2'3' 7" =6, d3 =2°3' 7" = 3,
(2,0,0),(1,1,1),(1,0,0) ~ dy =223'"7" =84,dy, =2°3'7" =3, d3 =2°3' 7" = 3,
(1,1,0),(2,1,0),(1,0,0) ~ dy =2'327" =126,dy =2'3' 7" =6, d3 =2°3°7° = 1,
(2,0,0),(2,1,0),(1,0,0) ~ dy =22327"' =252, dy = 2°3'7° =3, dy = 203°7° =1,
(1,1,0),(3,0,0),(1,0,0) ~ dy =2'3*7" =378, dy, =2'3°7" =2, dy =2°3°7° = 1,
(2,0,0),(3,0,0),(1,0,0) ~ d; =22337" =756,dy =2°3°7" =1, d3 =2°3°7" = 1,

Since elementary divisors of an abelian group must be at least 2, we discard any d; = 1
(if we included them, they would contribute the trivial group Z/1Z = {0} to the direct
sum decomposition, which wouldn’t change the overall group anyway). So our final list of
elementary divisors for an abelian group of order 756 is:

316|142, 3|3|84, 6|126, 3|252, 2|378, 756.
And the corresponding list of representative abelian groups is finally
(Z/32)®(Z/67) & (Z/42Z), (Z/37)? & (Z/84Z), (Z/67) & (7.,/1267),
(Z)3Z) & (Z)2527), (Z/2Z) & (Z/3T8Z), Z]T56Z.
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Before proceeding to the next example, we make a quick observation. If dy|dg_1|---|d;
are the elementary divisors of an abelian group A, so that

A= (Z)dZ) @ (Z)dp 1Z) D -+ & (Z])d17),

then d; (the largest elementary divisor) is an (in fact the smallest) exponent for A. That is,
dia =0 for all a € A. To see why, let (my, my_1,...,my) belong to the direct sum. Then

d1(mk, Mmeg—1,... ,ml) = (dlmk> dymy_1, . .. 7d1m1)-

But every element of Z/d;Z has order dividing d; (the size of the group), and d;|d; for all j.
So
(dlmk, dlmk_l, ce ,dlml) = (0, 0, ce ,0),

as claimed. A nice application of this fact is the following.

Example 2. Let G be a finite subgroup of C*. Use the Fundamental Theorem to write
G=(Z)dZ) D (Z)dy A7) D - & (Z/d7),

with dg|dg_1|---|d; (keep in mind that the group G is written multiplicatively). According
to the discussion above, 29t = 1 for all z € G. This shows that every member of G is a root
of the polynomial X% — 1. This means that X% —1 has at least |G| = d;ds - - - dj, roots in C.
But it is well known that the number of complex roots of a polynomial f(X) with complex
coefficients cannot have more roots than its degree deg f, which is simply the largest power
of X occurring in f(X). In particular, X% — 1 has at most d; complex roots. Since the
members of G have yielded dyds - - - dj, roots, we must therefore have

didy - - - dy, < d;.

If £ > 1 this is impossible, since each d; > 2. So we must have k = 1. That is, d; is the only
elementary divisor of GG, so that
G=7Z/d\Z,

which shows that G must be cyclic. So we have proven:

Theorem 2. Fvery finite subgroup of the multiplicative group C* must be cyclic.

Going a little bit further, suppose G is a finite subgroup of C* of order n. Then G is
cyclic, say G = ((). And every z € G satisfies 2" = 1, or 2" — 1 = 0, since n = |G|. So the
members of G are precisely the roots of the polynomial X™ — 1. That is

G=(Q)=pn={2€Clz" =1=0},

the group of nth roots of unity, which we encountered previously in the homework. The
generator ¢ (which is not unique) is called a primitive nth root of unity. This provides a
classification of every finite subgroup of C*.

Theorem 3. For each n € N, the group p, of nth roots of unity is cyclic, and it is the
unique subgroup of C* of order n.



