Exercise 1. Given $n \in \mathbb{N}$ and $x \in \mathbb{Z}$, let $R_{n}(x)$ denote the remainder when x is divided by n using the Division Algorithm.
a. Prove that for any $a, b \in \mathbb{Z}, R_{n}(a)=R_{n}(b)$ if and only if $a-b$ is divisible by n in \mathbb{Z}, i.e. there is a $c \in \mathbb{Z}$ so that $a-b=c n$.
b. Prove that for any $a, b \in \mathbb{Z}$ one has $R_{n}(a+b)=R_{n}\left(R_{n}(a)+b\right)$ and $R_{n}(a b)=R_{n}\left(R_{n}(a) b\right)$.
c. Recall that for $a, b \in \mathbb{Z}$ we defined $a \oplus b=R_{n}(a+b)$ and $a \otimes b=R_{n}(a b)$. Show that \oplus and \otimes are both associative. [Suggestion. Given $a, b, c \in \mathbb{Z}$, consider $R_{n}(a+b+c)$ and $\left.R_{n}(a b c).\right]$

Exercise 2. Let

$$
G=\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \pm\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \pm\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\right\}
$$

a. Show that G is closed under matrix multiplication.
b. Prove that G is a group under matrix multiplication. Is it abelian?

Exercise 3. Let G be a group and $e_{0} \in G$. Given $x, y \in G$, define a new binary operation * on G by

$$
x * y=x e_{0}^{-1} y
$$

Prove that G is a group under $*$.

