

Modern Algebra Spring 2023

Assignment 11 Due April 5

Exercise 1. Let p be a prime number and let A be an abelian p-group. Show that every subgroup and every quotient of A is also an abelian p-group. [Suggestion. If $A' \leq A$, the natural map $\pi : A \to A/A'$ is a homomorphism. Now see Exercise 5.1.4.]

Exercise 2. Let p be a prime number and define

$$\mathbb{Z}_{(p)} = \left\{ \frac{n}{p^m} \, \middle| \, n \in \mathbb{Z}, m \in \mathbb{N}_0 \right\}.$$

- **a.** Show that $\mathbb{Z}_{(p)}$ is a subgroup of $(\mathbb{Q}, +)$ containing \mathbb{Z} .
- **b.** Show that $Z(p^{\infty}) := \mathbb{Z}_{(p)}/\mathbb{Z}$ is an infinite *p*-group.

Exercise 3. Let A and B be abelian groups, and let $f : A \to B$ be a homomorphism. Suppose there is a homomorphism $g : B \to A$ so that $f \circ g = 1_B$. Prove that $A = \ker f \oplus \operatorname{im} g$. [Suggestion: Given $a \in A$, write a = (a - g(f(a))) + g(f(a)).]