Modern Algebra
Spring 2023

Assignment 13.2
Due April 19

Exercise 1. Let A be an additive abelian group and for $k \in \mathbb{N}$ let C_{k} denote a cyclic subgroup of A with order k.
a. Let $m, n \in \mathbb{N}$ and suppose $\operatorname{gcd}(m, n)=1$. Use Lagrange's Theorem to show that the sum $C_{m}+C_{n}$ is direct.
b. With m and n as above, write $C_{m}=\langle a\rangle$ and $C_{n}=\langle b\rangle$. Show that $a+b$ has order $m n$. Conclude that $C_{m} \oplus C_{n}=C_{m n}$.
c. Let $m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$ and suppose $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$. Use induction to prove that

$$
C_{m_{1}} \oplus \cdots \oplus C_{m_{k}}=C_{m_{1} m_{2} \cdots m_{k}}
$$

Exercise 2. Classify the finite abelian groups of order 4312 (there are 6, up to isomorphism).

Exercise 3. Lang, exercise II.7.2.

