Modern Algebra
Spring 2023
Assignment 14.2
Due April 26

Exercise 1. Let A be a finite abelian group. For $\chi, \psi \in \widehat{A}$, define their inner product to be

$$
\langle\chi, \psi\rangle=\frac{1}{|A|} \sum_{a \in A} \chi(a) \overline{\psi(a)},
$$

where for a complex number $z=x+i y$ we define $\bar{z}=x-i y$ (the complex conjugate). Use exercise 13.3.3 to prove the orthogonality relations

$$
\langle\chi, \psi\rangle= \begin{cases}1 & \text { if } \chi=\psi \\ 0 & \text { otherwise }\end{cases}
$$

[Suggestion: Show that $|\psi(a)|=1$ and hence $\overline{\psi(a)}=\psi(a)^{-1}=\psi^{-1}(a)$.]
Exercise 2. Let A be a finite abelian group of order n. Because A is self-dual, this implies $|\widehat{A}|=n$. Enumerate A and \widehat{A} in some fashion:

$$
A=\left\{a_{1}, a_{2},\left\langle, a_{n}\right\}, \widehat{A}=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right\} .\right.
$$

The character table of A is the $n \times n$ matrix

$$
M=\frac{1}{\sqrt{n}}\left(\chi_{i}\left(a_{j}\right)\right),
$$

whose rows (up to the factor of $1 / \sqrt{n}$) give all the values of a fixed character. Use the orthogonality relations of the preceding exercise to prove that

$$
M M^{*}=I,
$$

where $M^{*}=\bar{M}^{t}$.

Exercise 3. Continue using the notation of Exercise 2. In linear algebra one usually proves that if P and Q are square matrices with the same dimensions and $P Q=I$, then $P=Q^{-1}$. In other words, if P is a left inverse for Q, then it is automatically a two-sided inverse. Exercise 2 then implies that $M^{*} M=I$. Use this to prove that for any $a, b \in A$ one has the dual orthogonality relations

$$
\frac{1}{|A|} \sum_{\chi \in \widehat{A}} \chi(a) \bar{\chi}(b)= \begin{cases}1 & \text { if } a=b, \\ 0 & \text { otherwise } .\end{cases}
$$

This dual relationship is an essential ingredient in the proof of Dirichlet's theorem on primes in arithmetic progressions.

