

Modern Algebra Spring 2023

Assignment 15.2 Due April 28

Exercise 1. Let G be a finite group and let $H \leq G$. We have seen that G acts on the coset space G/H by left translation:

$$g(xH) = (gx)H$$

for all $g \in G$ and $xH \in G/H$. Because this is an action, the map $\lambda : G \to \text{Perm}(G/H)$ given by $g \mapsto \lambda_g$, where $\lambda_g(xH) = g(xH) = (gx)H$, is a homomorphism.

- **a.** If $K = \ker \lambda$, show that $K \leq H$.
- **b.** Conclude that [G:H] divides [G:K].

Exercise 2. Continuing the preceding exercise, suppose p is the smallest prime dividing |G|, and that [G:H] = p. Then $\operatorname{Perm}(G/H) \cong S_p$ and the First Isomorphism Theorem applied to λ yields an embedding $G/K \hookrightarrow S_p$.

- **a.** Explain why [G:K] divides p!.
- **b.** Use the preceding exercise to write [G:K] = mp for some $m \in \mathbb{N}$. Use part **a** to show that *m* divides (p-1)!.
- **c.** If a prime q divides m, show that q < p and q divides |G|. Conclude that m = 1, so that [G:K] = p.
- **d.** Show that [H:K] = 1. Conclude that $H \triangleleft G$.

Remark. Exercise 2 proves that if G is a finite group, $H \leq G$ and [G : H] is the smallest prime dividing |G|, then $H \triangleleft G$. We proved a weaker version of this result in an earlier exercise, in the case that |G| is even and [G : H] = 2, by directly comparing the left and right coset spaces G/H and $H \setminus G$.