

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2023 \end{array}$

Assignment 2.2 Due January 25

Exercise 1. Construct Cayley tables for the dihedral groups D_3 and D_4 .

Exercise 2. Given $n \ge 3$, let $P \subset \mathbb{R}^2$ be a regular *n*-gon. Give each vertex of P a unique label (in any way you like). Let $r: P \to P$ denote the smallest possible counterclockwise rotation of P about its center, and let $f: P \to P$ denote any symmetry of P that reverses the ordering of the labels of the vertices of P.

- **a.** Explain why $D_n = \{ \text{id}, r, r^2, \dots, r^{n-1}, f, rf, r^2f, \dots, r^{n-1}f \}.$
- **b.** Show that $fr = r^{n-1}f$.
- **c.** Show that D_n is nonabelian by proving that $rf \neq fr$.

Exercise 3. Describe the group of symmetries of the doubly infinite string

 $\cdots H H H H \cdots$

Is this group abelian?

Exercise 4. How large is the group of symmetries of a regular tetrahedron? Is it abelian?