

Modern Algebra Spring 2023

Assignment 3.3 Due February 1

Exercise 1. For $z=a+bi\in\mathbb{C}$, where $a,b\in\mathbb{R}$ and $i^2=-1$, recall that we defined $\overline{z}=a-bi$ and $|z|=\sqrt{a^2+b^2}$.

- **a.** Show that for all $z, w \in \mathbb{C}$ one has $\overline{z+w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \overline{w}$.
- **b.** Use part **a** and the fact that $|z|^2 = z\overline{z}$ to show that |zw| = |z||w| for all $z, w \in \mathbb{C}$.

Exercise 2. For $n \in \mathbb{N}$, let $\boldsymbol{\mu}_n = \{z \in \mathbb{C}^\times \mid z^n = 1\}$. The elements of $\boldsymbol{\mu}_n$ are called the *n*th roots of unity.

- **a.** Prove that μ_n is a subgroup of S^1 .
- **b.** Euler's Formula states that

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

for any $\theta \in \mathbb{R}$. Show that $z \in S^1$ if and only if $z = e^{i\theta}$ for some $\theta \in \mathbb{R}$.

c. The addition formulae for sine and cosine imply that

$$e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$$

for any $\theta, \phi \in \mathbb{R}$. Use this fact and part **b** to show that

$$z \in \mu_n \iff z = e^{\frac{2k\pi i}{n}}$$

for some $k \in \mathbb{Z}$. Conclude that $|\boldsymbol{\mu}_n| = n$.

Exercise 3. Prove that $Z(GL_2(\mathbb{R})) = \{aI \mid a \in \mathbb{R}^{\times}\}$. [Suggestion: First show that $\{aI \mid a \in \mathbb{R}^{\times}\}$ is a subgroup of the center. To prove the opposite inclusion, choose any $A \in Z(GL_2(\mathbb{R}))$ and commute it with the matrices $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.]

Exercise 4. Let

$$O_2(\mathbb{R}) = \{ A \in GL_2(\mathbb{R}) \mid AA^t = I \},$$

where A^t denotes the transpose of A (reflection of its entries across the diagonal). Show that $O_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$.