Modern Algebra
Assignment 6.1
Spring 2023

Exercise 1. Let $n \in \mathbb{N}$. Recall that for $a, b \in \mathbb{Z}$ we say that a is congruent to b modulo n, denoted $a \equiv b(\bmod n)$, provided $n \mid a-b$. If $R_{n}(x)$ denotes the remainder when an integer x is divided by n using the Division Algorithm, show that $a \equiv b(\bmod n)$ if and only if $R_{n}(a)=R_{n}(b)$.

Exercise 2. Let $\ell, m, n \in \mathbb{Z}$ with $\ell \mid n$ and $m \mid n$. Let $d=\operatorname{gcd}\left(\frac{n}{\ell}, \frac{n}{m}\right)$ and set $A=\langle\ell\rangle+\langle m\rangle$ in \mathbb{Z}_{n}.
a. Show that $A=\langle\ell\rangle \oplus\langle m\rangle$ if and only if $d=1$.
b. Show that $\mathbb{Z}_{n}=\langle\ell\rangle \oplus\langle m\rangle$ if and only if $d=1$ and $n=\ell m$.

Exercise 3. Let G be a group and $S \subseteq G$. Given $x, y \in G$, define $x \sim y$ by the condition $x y^{-1} \in S$. Prove that if \sim is an equivalence relation on G, then $S<G$.

