

Modern Algebra Spring 2023

Assignment 6.1 Due February 22

Exercise 1. Let $n \in \mathbb{N}$. Recall that for $a, b \in \mathbb{Z}$ we say that a is congruent to b modulo n, denoted $a \equiv b \pmod{n}$, provided n|a - b. If $R_n(x)$ denotes the remainder when an integer x is divided by n using the Division Algorithm, show that $a \equiv b \pmod{n}$ if and only if $R_n(a) = R_n(b)$.

Exercise 2. Let $\ell, m, n \in \mathbb{Z}$ with $\ell | n$ and m | n. Let $d = \gcd\left(\frac{n}{\ell}, \frac{n}{m}\right)$ and set $A = \langle \ell \rangle + \langle m \rangle$ in \mathbb{Z}_n .

a. Show that $A = \langle \ell \rangle \oplus \langle m \rangle$ if and only if d = 1.

b. Show that $\mathbb{Z}_n = \langle \ell \rangle \oplus \langle m \rangle$ if and only if d = 1 and $n = \ell m$.

Exercise 3. Let G be a group and $S \subseteq G$. Given $x, y \in G$, define $x \sim y$ by the condition $xy^{-1} \in S$. Prove that if \sim is an equivalence relation on G, then S < G.