

Modern Algebra Spring 2023

Assignment 6.2 Due February 22

Exercise 1. Let $n \in \mathbb{N}$. Compute $[\mathbb{Z} : n\mathbb{Z}]$. [Suggestion. Remember that the cosets of $n\mathbb{Z}$ in \mathbb{Z} are precisely the congruence classes modulo n].

Exercise 2. Compute $[\mathbb{R}^{\times} : \mathbb{R}^+]$.

Exercise 3. Show that every coset of \mathbb{R}^+ in \mathbb{C}^\times contains a unique element of absolute value equal to 1. Conversely, show that every coset of $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ in \mathbb{C}^\times contains a unique positive real number. In both cases, describe the cosets geometrically.

Exercise 4. Prove that $[\mathbb{R} : \mathbb{Q}]$ is infinite. [Suggestion: Argue by contradiction.]

Exercise 5. Let G be a group of order pqr, where p, q and r are distinct primes. If H, K < G satisfy |H| = qp and |K| = qr, prove that $|H \cap K| = q$. [Suggestion: Observe that K has more elements than H has (left) cosets, then use the pigeonhole principle.]