The First Isomorphism Theorem
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Let G be a group. For any H < G, the “reduction mod H” map

m:G— G/H,
a— aH,
which sends each element of G to its coset in G/H is called the natural surjection. When

H <G, we have
m(ab) = (ab)H = (aH)(bH) = 7(a)7(b),

for all a,b € G. This means that 7 is actually a surjective homomorphism in this case, which
we call the natural epimorphism. Since H is the identity coset in G/H, notice that a € ker 7
if and only if

aH =7(a)=H <= acH.

Thus
kerm = H.

That is, every normal subgroup of G is the kernel of a homomorphism with domain G. The
converse is also true.

Lemma 1. Let f: G — G be a homomorphism of groups. Then ker f < G.

Proof. Let z € G and let a € ker f. Then f(a) = € is the identity in G’ so that
Flwaz) = F(2) Fa)f(2) ) = F@)e fz) ™ = f(@) f(a) = ¢,
which shows that zaz™! € ker f. Since a € ker f was arbitrary, this proves
z(ker f)z! C ker f.
And since z € G was arbitrary this proves ker f <G. O
Given a group G and a subgroup H, Lemma 1 provides perhaps the easiest way to show
that H is normal in G: simply identify H as the kernel of a homomorphism f: G — G'.

There is actually a deeper connection between normal subgroups and kernels. Let f :
G — G’ be a group homomorphism. We have seen that f is injective if and only if ker f is
trivial. Until now this is the only real utility we’ve found for the kernel of a homomorphism.
But when ker f is nontrivial it actually provides a precise measurement of the failure of the
injectivity of f.



To see why, for a,b € G we define a ~ b if and only if f(a) = f(b). It is an easy exercise
to see that ~ is an equivalence relation on G (indeed, on the domain of any function between
two sets). Since

fla)=fb) & e=f0)"fla)=f(b'a) & blackerf < a=b (mod ker f),

the relation ~ is just congruence modulo ker f. So the equivalence class of a € G under ~
is just the coset a(ker f):

alker f) = {b e G| f(b) = f(a)}. (1)

Because the equivalence classes in GG/ ~ group elements according to their value under f,
there is a natural bijection G/ ~— im f which sends the class of a to f(a). But (1) shows
that G/ ~= G/ ker f, which brings us to:

Theorem 1 (First Isomorphism Theorem). Let f : G — G’ be a homomorphism of groups.
The rule f(aker f) = f(a) yields a well-defined monomorphism f : G/ker f — G'. If
m: G — G/ker f is the natural epimorphism, then f is the unique homomorphism so that

the diagram
G ! el

G/ ker f

is commutative, i.e. so that f = fom.

Proof. Equation (1) shows that f(a) = f(b) if and only if a(ker f) = b(ker f), so that f is
well-defined. It is a homomorphism since

f((aker f)(bker f)) = f((ab) ker f) = f(ab) = f(a)f(b) = faker f)f(bker f).
And it is injective since
flakerf)=¢ < fla)=¢ < ackerf < akerf=kerf,
which shows that ker f is the trivial subgroup of G/ker f. Finally, for any a € G we have
(fom)(a) = f(n(a)) = flaker f) = f(a),

sothat for = f. If g: G/ker f — G’ is any other map so that g o7 = f, then for any
aker f € G/ker f,

glaker f) = g(n(a)) = (gom)(a) = f(a) = flaker f) = g=.
]

Corollary 1. Let f : G — G’ be a homomorphism of groups. Then the induced map f of
Theorem 1 yields an isomorphism

G/ker f = im f.



Proof. Every monomorphism is an isomorphism between its domain and its image. Since
im f =im f by construction, the result follows from Theorem 1. O

Corollary 1 and the discussion leading up to Lemma 1 show that the quotients of a group
G correspond directly with its homomorphic images. So in some sense all of the information
needed to construct homomorphisms out of a group G is already contained inside G'!

The First Isomorphism Theorem is a powerful tool for constructing homomorphisms out
of quotient groups. As such, it provides one of the most efficient means of identifying quotient
groups (up to isomorphism).

Example 1. Let f: R — S! be given by f(z) = €*™ = cos(2rx) + isin(27z). Then f is
an epimorphism (additive to multiplicative) since

f($ + y) — e27ri(z+y) — eZTrierQﬂ'iy — 6271'1':1:627riy — f(x)f(y)

for all 2,y € R. And for any z = ¢ € S, if 2 = L € R, then f(z) = e2miar = ¢if = 4.
We see that x € ker f if and only if f(x) = €*™® = 1 if and only if 27z € 27Z if and only if
x € Z. Therefore, by the first isomorphism theorem

R/Z = S*.

Intuitively speaking, this says that if we start with the real line, and then identify all of the
integers to a single point, the resulting quotient space is a circle.

Example 2. Let n € N and define f : S* — S' by f(z) = 2™. Then for any z,w € S we
have

fzw) = (zw)" = 2"w" = [f(2) f(w),
since S' is abelian. The map f is also surjective. Given w € S!, write w = €. Then
z=¢e%" ¢ SV and f(z) = (/") = €% = w. And z € ker f if and only if f(z) = 2" = 1,
which means that z € w,, the group of nth roots of unity. So by the First Isomorphism

Theorem we have
Sl/[,l/n = Sl-

Example 3. Define f: C* — S by f(2) = z/|z|. This is a homomorphism since

flzw) = f(2)f(w)
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for all z,w € C*. It is surjective since for any z € S* we have z € C* and
z oz

f(z>:m:I:Z'

The kernel of f consists of those z € C* for which f(z) = z/|z| = 1 or, equivalently,
z = |z| # 0. This certainly implies that z € R*. Conversely, if z € RT, then z = |z| and
consequently f(z) = 1. The First Isomorphism Theorem then tells us that

C*/RT = S



Example 4. Now define g : C* — R" by g(z) = |2|. This is a homomorphism since

9(zw) = |zw| = [2] Jw| = g(2)g(w)

for any z,w € C*. Tt is surjective since given any € Rt one has x € C* and g(z) = |z| = «.
And z € kerg if and only if g(z) = |z| = 1 if and only if z € S*. So this time the First
Isomorphism Theorem tells us that

C*/S' = R*.

Example 5. Let’s put the preceding two examples together. Define (f x g) : C* — St x R*
by (f x g)(z) = (f(2),9(2)). The reader can check that f X g is a homomorphism. It is
surjective since if we are given any (z,7) € S* x R, then zz € C* and

(Fx o)) = (oplest) = (el 4) = (250 1) = o)

Finally, z € ker(f x g¢) if and only if (f x g)(z) = (f(2),9(2)) = (1,1). This is equivalent to
z€ker fNkerg=RTNS' = {1},

since the only positive real number on the unit circle is 1. So ker(f x g¢) is trivial and we
obtain

C* =2 S x RT,
by the First Isomorphism Theorem. This provides an algebraic proof of the existence and
uniqueness of polar decompositions z = re? of complex numbers: r = |z| and ¥ = z/|2|.

Example 6. Let A be an additive abelian group and let B,C < A. The inclusion maps
tp: B — Aandic: C — Agiven by tp(b) = band tc(c) = ¢ are clearly homomorphisms. It
follows that their sum tp @t : BXxC — A, which is given by (.p@tc)(b, ¢) = tp(b)+ic(c), is
also a homomorphism. Its image is clearly the subgroup B+C < A. And (b,c) € ker(tpP i)
if and only if (t®tc) (b, ¢) = b+c = 0. This implies —¢ = b € B, so that ¢ € BNC and hence
be BNC. Conversely, if b € BN C then (b, —b) € B x C and (tp ® t¢)(b,—b) =b—b=0.
Hence

ker(eg ® o) = {(b,—b)|be BNC} = BNC,

and the First Isomorphism Theorem gives
(BxC)/{(b,=b)|be BNC} = B+C.

We see immediately that the internal sum B + C'is direct, so that B+C = B®C = BxC,
if and only if BN C = {0}, a result we have derived earlier.

Example 7 (The Chinese Remainder Theorem). For any m € N, we have the natural
epimorphism m,, : Z — Z/mZ given by m,(k) = k + mZ. So if we are given another
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n € N, we can construct the product map (m,, X m,) : Z — (Z/mZ) x (Z/nZ), which is
defined by (7, X m,)(k) = (mn(k), 7. (k)). We see that k € ker(m,, x m,) if and only if
(k +mZ,k +nZ) = (mZ,nZ). This holds if and only if k € mZ NnZ = lem(m,n)Z. The
First Isomorphism Theorem therefore yields

Z/lem(m,n)Z = im(m,, X m,). (2)
Therefore
[im(7,, X m,)| = |Z/1lem(m,n)Z| = lem(m,n).
Because the codomain of 7, X 7, is finite, the Pigeonhole Principle implies that =, x m, is
surjective if and only if
mn = |(Z/mZ) x (Z/nZ)| = |im(m,, X 7,)| = lem(m, n).

Since mn = ged(m, n) lem(m, n), this condition is equivalent to ged(m,n) = 1. In this case
(2) becomes

Z/mnZ = (Z/mZ) x (Z/nZ), (3)
the isomorphism being given by k + mnZ — (k + mZ, k + nZ).

The isomorphism (3) is an algebraic version of what is more commonly known as the
Chinese Remainder Theorem (CRT). It tells us that if m and n are relatively prime, then
for any a,b € Z there exists a solution x € Z to the system of simultaneous congruences

r=a (modm),

(4)

r=b (mod n),

and that z is unique up to addition of multiples of mn. To see how this follows from (3),
notice that if we take (a + mZ,b + nZ) € (Z/mZ) x (Z/nZ), then there is exactly one
x +mnZ € Z/mnZ so that

(@ +mZ,b+nZ) = (T, X m)(x +mnZ) = (x + mZ,x + nZ).

Example 8 (Classification of Cyclic Groups). Let G = (g) be a cyclic group generated by
g. Define f :Z — G by f(n) = ¢". For any m,n € Z we have

f(m+n)=g""™" =g"g" = f(m)f(n),

proving that f is a homomorphism which is surjective since every member of G is a power
of g. Furthermore
ker f={neZ|g" =e}.
If G is infinite, then g must have infinite order so that ¢" = e if and only if n = 0. This
implies ker f = {0} and hence f is an isomorphism. That is, Z = G. If |G| = |g| = m € N,
then we know that
ker f={neZ|g"=e} =mZ.

In this case the First Isomorphism Theorem then implies that Z/mZ = G. Thus:

G = (g) = 7 if |g| = oo,
B Z/mZ it |g| = m.



This shows that, up to isomorphism, the only cyclic groups are Z and its quotients, and
there is exactly one cyclic group (again, up to isomorphism) of any given order.

Example 9 (Subgroups of Cyclic Groups). Let G = (g) be a cyclic group. If G is infinite,
the preceding example tells us that Z = G, the isomorphism being given by n — ¢". This
isomorphism provides a correspondence between the subgroups of G and the subgroups of
Z, which we know to have the form mZ for m € Ny. Since mZ maps to (¢"), we see that
the subgroups of GG are in one-to-one correspondence with the nonnegative integers.

Now suppose G is finite with order m and let H < G. Because cyclic groups are abelian,
H is normal in G. And since quotients of cyclic groups are cyclic, G/H must be cyclic. Let
d = |H|. Lagrange’s Theorem implies that d|m and |G/H| = m/d. Because gH generates
G/H, we conclude that gH has order m/d in G/H. Thus

H=(gH"'=¢g"'H o ¢g"icH < (¢ <H.
Since the order of g™/? is

g = - - _a-nl,
19" = ety my @ ~ zedtmmyd) ~ mga =~ 4=

we find that we in fact have H = (g™/?).

Conversely, if d € N and d|m, then ¢g"/¢ has order d by the computation above, so that
(g™//?) is a subgroup of G of order d. Taken together with the conclusion of the preceding
paragraph, this shows that for any d|m, (g"™/?) is the unique subgroup of G of order d. We
summarize our findings as follows.

Theorem 2 (Subgroups of Cyclic Groups). Let G = (g) be a cyclic group. Then every
subgroup of G is also cyclic. Furthermore:
a. If G is infinite, then the distinct subgroups of G are given by (g™) for m € Ny.
b. If G has order m € N, then for every d|m there is a unique subgroup H < G of order
d, namely H = (g™?).

Put another way, Theorem 2 tells us that the subgroups of an infinite cyclic group cor-
respond to the nonnegative integers m € Ny, while the subgroups of a finite cyclic group G
correspond to the (positive) divisors of |G|.

Exercise 1. Let G be a finite cyclic group. Show that for every divisor d of |G| there exists
a unique H < G so that G/H has order d.

Example 10 (The Second Isomorphism Theorem).

Let G be a group and consider a sequence of subgroups K < H < G. If K 4G, it is easy
to verify that K < H and that the coset space H/K is a subgroup of G/K. If H <G, then
for any gK € G/K and hK € H/K we have

(9K)(hK)(gK)™' = (ghg")K € H/K,



since ghg™! € H. Thus H/K<G/K. The First Isomorphism Theorem can be used to quickly
identify the quotient group (G/K)/(H/K). Specifically, we have:

Theorem 3 (Second Isomorphism Theorem). Let G be a group. If K<G and H is a subgroup
of G containing K, then H/K is a subgroup of G/K. If H is normal in G, then H/K is a
normal subgroup of G/K and

(G/K)/(H/K)=G/H.

Proof. Consider the composition of the natural surjections
G—G/K — (G/K)/(H/K).

It is surjective and g € G belongs to the kernel if and only if (¢K)(H/K) = H/K, that is
gK € H/K. This happens if and only if gK = hK for some h € H, so that g7'h € K < H
and hence gH = hH = H, i.e. ¢ € H. Therefore the kernel of the composed natural maps is
precisely H, and the First Isomorphism Theorem yields

G/H = (G/K)/(H/K).

Before moving on, we pause to prove a generalization of the First Isomorphism Theorem
that can be useful in certain situations. Specifically, when one wishes to construct a ho-
momorphism of the form f : G/N — H, but is unable to find a suitable homomorphism
f G — H with N = ker f. The proof is nearly identical to the proof of Theorem 1.

Theorem 4 (Generalized First Isomorphism Theorem). Let f : G — H be a group homo-
morphism. If J is a normal subgroup of G contained in ker f, and w : G — G/J is the natural
surjection, then the rule f(xJ) = f(x) yields a well-defined homomorphism f : G/J — H
which satisfies f = f om. Furthermore, f is injective if and only if J = ker f.

Remark. Note that when J = ker f, Theorem 3 reduces to the usual First Isomorphism
Theorem.

Proof. If zJ = yJ, then y~'z € J < ker f, so that f(y~'z) = e. But f(y'z) = f(y)~' f(x),
so that we have f(y)~!f(x) = e. Hence f(x) = f(y), which shows that f is well-defined. Tt
is a homomorphism since

@)y ) = flwy) = f(ay) = f(x)f(y) = [(=])f(y])
for all zJ,yJ € G/J. And for € G we have
(fom)(z) = f(n(x)) = f(a]) = f(x)
by construction. Finally, x.J € ker f if and only if e = f(x.J) = f(z), so that
ker f = {xJ |x € ker f} = (ker f)/J.

Therefore ker f is trivial if and only if (ker f)/J is trivial, which is equivalent to J = ker f. [
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Example 11. Let G be a group and let N; < Ny be normal subgroups of G. Then N;
is contained in the kernel of the natural surjection 7 : G — G/N,. By the strong First
Isomorphism Theorem, this means that 7(xN;) = m(x) = xNy defines a homomorphism

T G/Nl — G/N2

For a particular instance of this scenario, let m,n € N with m|n and take G = Z. Then
nZ < mZ, and we have an epimorphism 7 : Z/nZ — Z/mZ given by a + nZ +— a + mZ.



