
The First Isomorphism Theorem

R. C. Daileda

Let G be a group. For any H < G, the “reduction mod H” map

π : G → G/H,

a 7→ aH,

which sends each element of G to its coset in G/H is called the natural surjection. When
H ◁ G, we have

π(ab) = (ab)H = (aH)(bH) = π(a)π(b),

for all a, b ∈ G. This means that π is actually a surjective homomorphism in this case, which
we call the natural epimorphism. Since H is the identity coset in G/H, notice that a ∈ kerπ
if and only if

aH = π(a) = H ⇐⇒ a ∈ H.

Thus
kerπ = H.

That is, every normal subgroup of G is the kernel of a homomorphism with domain G. The
converse is also true.

Lemma 1. Let f : G → G′ be a homomorphism of groups. Then ker f ◁ G.

Proof. Let x ∈ G and let a ∈ ker f . Then f(a) = e′ is the identity in G′ so that

f(xax−1) = f(x)f(a)f(x)−1 = f(x)e′f(x)−1 = f(x)f(x)−1 = e′,

which shows that xax−1 ∈ ker f . Since a ∈ ker f was arbitrary, this proves

x(ker f)x−1 ⊆ ker f.

And since x ∈ G was arbitrary this proves ker f ◁ G.

Given a group G and a subgroup H, Lemma 1 provides perhaps the easiest way to show
that H is normal in G: simply identify H as the kernel of a homomorphism f : G → G′.

There is actually a deeper connection between normal subgroups and kernels. Let f :
G → G′ be a group homomorphism. We have seen that f is injective if and only if ker f is
trivial. Until now this is the only real utility we’ve found for the kernel of a homomorphism.
But when ker f is nontrivial it actually provides a precise measurement of the failure of the
injectivity of f .
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To see why, for a, b ∈ G we define a ∼ b if and only if f(a) = f(b). It is an easy exercise
to see that ∼ is an equivalence relation on G (indeed, on the domain of any function between
two sets). Since

f(a) = f(b) ⇔ e = f(b)−1f(a) = f(b−1a) ⇔ b−1a ∈ ker f ⇔ a ≡ b (mod ker f),

the relation ∼ is just congruence modulo ker f . So the equivalence class of a ∈ G under ∼
is just the coset a(ker f):

a(ker f) = {b ∈ G | f(b) = f(a)}. (1)

Because the equivalence classes in G/ ∼ group elements according to their value under f ,
there is a natural bijection G/ ∼→ im f which sends the class of a to f(a). But (1) shows
that G/ ∼= G/ ker f , which brings us to:

Theorem 1 (First Isomorphism Theorem). Let f : G → G′ be a homomorphism of groups.
The rule f(a ker f) = f(a) yields a well-defined monomorphism f : G/ ker f → G′. If
π : G → G/ ker f is the natural epimorphism, then f is the unique homomorphism so that
the diagram

G
f //

π
��

G′

G/ ker f

f

??

is commutative, i.e. so that f = f ◦ π.

Proof. Equation (1) shows that f(a) = f(b) if and only if a(ker f) = b(ker f), so that f is
well-defined. It is a homomorphism since

f((a ker f)(b ker f)) = f((ab) ker f) = f(ab) = f(a)f(b) = f(a ker f)f(b ker f).

And it is injective since

f(a ker f) = e′ ⇔ f(a) = e′ ⇔ a ∈ ker f ⇔ a ker f = ker f,

which shows that ker f is the trivial subgroup of G/ ker f . Finally, for any a ∈ G we have

(f ◦ π)(a) = f(π(a)) = f(a ker f) = f(a),

so that f ◦ π = f . If g : G/ ker f → G′ is any other map so that g ◦ π = f , then for any
a ker f ∈ G/ ker f ,

g(a ker f) = g(π(a)) = (g ◦ π)(a) = f(a) = f(a ker f) ⇒ g = f.

Corollary 1. Let f : G → G′ be a homomorphism of groups. Then the induced map f of
Theorem 1 yields an isomorphism

G/ ker f ∼= im f.
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Proof. Every monomorphism is an isomorphism between its domain and its image. Since
im f = im f by construction, the result follows from Theorem 1.

Corollary 1 and the discussion leading up to Lemma 1 show that the quotients of a group
G correspond directly with its homomorphic images. So in some sense all of the information
needed to construct homomorphisms out of a group G is already contained inside G!

The First Isomorphism Theorem is a powerful tool for constructing homomorphisms out
of quotient groups. As such, it provides one of the most efficient means of identifying quotient
groups (up to isomorphism).

Example 1. Let f : R → S1 be given by f(x) = e2πix = cos(2πx) + i sin(2πx). Then f is
an epimorphism (additive to multiplicative) since

f(x+ y) = e2πi(x+y) = e2πix+2πiy = e2πixe2πiy = f(x)f(y)

for all x, y ∈ R. And for any z = eiθ ∈ S1, if x = θ
2π

∈ R, then f(x) = e2πi·
θ
2π = eiθ = z.

We see that x ∈ ker f if and only if f(x) = e2πix = 1 if and only if 2πx ∈ 2πZ if and only if
x ∈ Z. Therefore, by the first isomorphism theorem

R/Z ∼= S1.

Intuitively speaking, this says that if we start with the real line, and then identify all of the
integers to a single point, the resulting quotient space is a circle.

Example 2. Let n ∈ N and define f : S1 → S1 by f(z) = zn. Then for any z, w ∈ S1 we
have

f(zw) = (zw)n = znwn = f(z)f(w),

since S1 is abelian. The map f is also surjective. Given w ∈ S1, write w = eiθ. Then
z = eiθ/n ∈ S1 and f(z) = (eiθ/n)n = eiθ = w. And z ∈ ker f if and only if f(z) = zn = 1,
which means that z ∈ µn, the group of nth roots of unity. So by the First Isomorphism
Theorem we have

S1/µn
∼= S1.

Example 3. Define f : C× → S1 by f(z) = z/|z|. This is a homomorphism since

f(zw) =
zw

|zw|
=

zw

|z| |w|
=

z

|z|
w

|w|
= f(z)f(w)

for all z, w ∈ C×. It is surjective since for any z ∈ S1 we have z ∈ C× and

f(z) =
z

|z|
=

z

1
= z.

The kernel of f consists of those z ∈ C× for which f(z) = z/|z| = 1 or, equivalently,
z = |z| ̸= 0. This certainly implies that z ∈ R+. Conversely, if z ∈ R+, then z = |z| and
consequently f(z) = 1. The First Isomorphism Theorem then tells us that

C×/R+ ∼= S1.
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Example 4. Now define g : C× → R+ by g(z) = |z|. This is a homomorphism since

g(zw) = |zw| = |z| |w| = g(z)g(w)

for any z, w ∈ C×. It is surjective since given any x ∈ R+, one has x ∈ C× and g(x) = |x| = x.
And z ∈ ker g if and only if g(z) = |z| = 1 if and only if z ∈ S1. So this time the First
Isomorphism Theorem tells us that

C×/S1 ∼= R+.

Example 5. Let’s put the preceding two examples together. Define (f×g) : C× → S1×R+

by (f × g)(z) = (f(z), g(z)). The reader can check that f × g is a homomorphism. It is
surjective since if we are given any (z, x) ∈ S1 × R+, then xz ∈ C× and

(f × g)(xz) =

(
xz

|xz|
, |xz|

)
=

(
xz

|x| |z|
, |x| |z|

)
=

( xz

x · 1
, x · 1

)
= (z, x).

Finally, z ∈ ker(f × g) if and only if (f × g)(z) = (f(z), g(z)) = (1, 1). This is equivalent to

z ∈ ker f ∩ ker g = R+ ∩ S1 = {1},

since the only positive real number on the unit circle is 1. So ker(f × g) is trivial and we
obtain

C× ∼= S1 × R+,

by the First Isomorphism Theorem. This provides an algebraic proof of the existence and
uniqueness of polar decompositions z = reiθ of complex numbers: r = |z| and eiθ = z/|z|.

Example 6. Let A be an additive abelian group and let B,C < A. The inclusion maps
ιB : B → A and ιC : C → A given by ιB(b) = b and ιC(c) = c are clearly homomorphisms. It
follows that their sum ιB⊕ιC : B×C → A, which is given by (ιB⊕ιC)(b, c) = ιB(b)+ιC(c), is
also a homomorphism. Its image is clearly the subgroup B+C < A. And (b, c) ∈ ker(ιB⊕ιC)
if and only if (ιB⊕ιC)(b, c) = b+c = 0. This implies −c = b ∈ B, so that c ∈ B∩C and hence
b ∈ B ∩ C. Conversely, if b ∈ B ∩ C then (b,−b) ∈ B × C and (ιB ⊕ ιC)(b,−b) = b− b = 0.
Hence

ker(ιB ⊕ ιC) = {(b,−b) | b ∈ B ∩ C} ∼= B ∩ C,

and the First Isomorphism Theorem gives

(B × C)/{(b,−b) | b ∈ B ∩ C} ∼= B + C.

We see immediately that the internal sum B+C is direct, so that B+C = B⊕C ∼= B×C,
if and only if B ∩ C = {0}, a result we have derived earlier.

Example 7 (The Chinese Remainder Theorem). For any m ∈ N, we have the natural
epimorphism πm : Z → Z/mZ given by πm(k) = k + mZ. So if we are given another
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n ∈ N, we can construct the product map (πm × πn) : Z → (Z/mZ) × (Z/nZ), which is
defined by (πm × πn)(k) = (πm(k), πn(k)). We see that k ∈ ker(πm × πn) if and only if
(k +mZ, k + nZ) = (mZ, nZ). This holds if and only if k ∈ mZ ∩ nZ = lcm(m,n)Z. The
First Isomorphism Theorem therefore yields

Z/ lcm(m,n)Z ∼= im(πm × πn). (2)

Therefore
|im(πm × πn)| = |Z/ lcm(m,n)Z| = lcm(m,n).

Because the codomain of πm × πn is finite, the Pigeonhole Principle implies that πm × πn is
surjective if and only if

mn = |(Z/mZ)× (Z/nZ)| = |im(πm × πn)| = lcm(m,n).

Since mn = gcd(m,n) lcm(m,n), this condition is equivalent to gcd(m,n) = 1. In this case
(2) becomes

Z/mnZ ∼= (Z/mZ)× (Z/nZ), (3)

the isomorphism being given by k +mnZ 7→ (k +mZ, k + nZ).

The isomorphism (3) is an algebraic version of what is more commonly known as the
Chinese Remainder Theorem (CRT). It tells us that if m and n are relatively prime, then
for any a, b ∈ Z there exists a solution x ∈ Z to the system of simultaneous congruences

x ≡ a (mod m),

x ≡ b (mod n),
(4)

and that x is unique up to addition of multiples of mn. To see how this follows from (3),
notice that if we take (a + mZ, b + nZ) ∈ (Z/mZ) × (Z/nZ), then there is exactly one
x+mnZ ∈ Z/mnZ so that

(a+mZ, b+ nZ) = (πm × πn)(x+mnZ) = (x+mZ, x+ nZ).

Example 8 (Classification of Cyclic Groups). Let G = ⟨g⟩ be a cyclic group generated by
g. Define f : Z → G by f(n) = gn. For any m,n ∈ Z we have

f(m+ n) = gm+n = gmgn = f(m)f(n),

proving that f is a homomorphism which is surjective since every member of G is a power
of g. Furthermore

ker f = {n ∈ Z | gn = e}.
If G is infinite, then g must have infinite order so that gn = e if and only if n = 0. This
implies ker f = {0} and hence f is an isomorphism. That is, Z ∼= G. If |G| = |g| = m ∈ N,
then we know that

ker f = {n ∈ Z | gn = e} = mZ.
In this case the First Isomorphism Theorem then implies that Z/mZ ∼= G. Thus:

G = ⟨g⟩ ∼=

{
Z if |g| = ∞,

Z/mZ if |g| = m.
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This shows that, up to isomorphism, the only cyclic groups are Z and its quotients, and
there is exactly one cyclic group (again, up to isomorphism) of any given order.

Example 9 (Subgroups of Cyclic Groups). Let G = ⟨g⟩ be a cyclic group. If G is infinite,
the preceding example tells us that Z ∼= G, the isomorphism being given by n 7→ gn. This
isomorphism provides a correspondence between the subgroups of G and the subgroups of
Z, which we know to have the form mZ for m ∈ N0. Since mZ maps to ⟨gm⟩, we see that
the subgroups of G are in one-to-one correspondence with the nonnegative integers.

Now suppose G is finite with order m and let H ≤ G. Because cyclic groups are abelian,
H is normal in G. And since quotients of cyclic groups are cyclic, G/H must be cyclic. Let
d = |H|. Lagrange’s Theorem implies that d|m and |G/H| = m/d. Because gH generates
G/H, we conclude that gH has order m/d in G/H. Thus

H = (gH)m/d = gm/d H ⇔ gm/d ∈ H ⇔ ⟨gm/d⟩ ≤ H.

Since the order of gm/d is∣∣gm/d
∣∣ = |g|

gcd(|g|,m/d)
=

m

gcd(m,m/d)
=

m

m/d
= d = |H|,

we find that we in fact have H = ⟨gm/d⟩.

Conversely, if d ∈ N and d|m, then gm/d has order d by the computation above, so that
⟨gm//d⟩ is a subgroup of G of order d. Taken together with the conclusion of the preceding
paragraph, this shows that for any d|m, ⟨gm/d⟩ is the unique subgroup of G of order d. We
summarize our findings as follows.

Theorem 2 (Subgroups of Cyclic Groups). Let G = ⟨g⟩ be a cyclic group. Then every
subgroup of G is also cyclic. Furthermore:

a. If G is infinite, then the distinct subgroups of G are given by ⟨gm⟩ for m ∈ N0.

b. If G has order m ∈ N, then for every d|m there is a unique subgroup H ≤ G of order
d, namely H = ⟨gm/d⟩.

Put another way, Theorem 2 tells us that the subgroups of an infinite cyclic group cor-
respond to the nonnegative integers m ∈ N0, while the subgroups of a finite cyclic group G
correspond to the (positive) divisors of |G|.

Exercise 1. Let G be a finite cyclic group. Show that for every divisor d of |G| there exists
a unique H ≤ G so that G/H has order d.

Example 10 (The Second Isomorphism Theorem).

Let G be a group and consider a sequence of subgroups K ≤ H ≤ G. If K ◁G, it is easy
to verify that K ◁ H and that the coset space H/K is a subgroup of G/K. If H ◁ G, then
for any gK ∈ G/K and hK ∈ H/K we have

(gK)(hK)(gK)−1 = (ghg−1)K ∈ H/K,

6



since ghg−1 ∈ H. Thus H/K◁G/K. The First Isomorphism Theorem can be used to quickly
identify the quotient group (G/K)/(H/K). Specifically, we have:

Theorem 3 (Second Isomorphism Theorem). Let G be a group. If K◁G and H is a subgroup
of G containing K, then H/K is a subgroup of G/K. If H is normal in G, then H/K is a
normal subgroup of G/K and

(G/K)/(H/K) ∼= G/H.

Proof. Consider the composition of the natural surjections

G → G/K → (G/K)/(H/K).

It is surjective and g ∈ G belongs to the kernel if and only if (gK)(H/K) = H/K, that is
gK ∈ H/K. This happens if and only if gK = hK for some h ∈ H, so that g−1h ∈ K ≤ H
and hence gH = hH = H, i.e. g ∈ H. Therefore the kernel of the composed natural maps is
precisely H, and the First Isomorphism Theorem yields

G/H ∼= (G/K)/(H/K).

Before moving on, we pause to prove a generalization of the First Isomorphism Theorem
that can be useful in certain situations. Specifically, when one wishes to construct a ho-
momorphism of the form f : G/N → H, but is unable to find a suitable homomorphism
f : G → H with N = ker f . The proof is nearly identical to the proof of Theorem 1.

Theorem 4 (Generalized First Isomorphism Theorem). Let f : G → H be a group homo-
morphism. If J is a normal subgroup of G contained in ker f , and π : G → G/J is the natural
surjection, then the rule f(xJ) = f(x) yields a well-defined homomorphism f : G/J → H
which satisfies f = f ◦ π. Furthermore, f is injective if and only if J = ker f .

Remark. Note that when J = ker f , Theorem 3 reduces to the usual First Isomorphism
Theorem.

Proof. If xJ = yJ , then y−1x ∈ J ≤ ker f , so that f(y−1x) = e. But f(y−1x) = f(y)−1f(x),
so that we have f(y)−1f(x) = e. Hence f(x) = f(y), which shows that f is well-defined. It
is a homomorphism since

f((xJ)(yJ)) = f(xyJ) = f(xy) = f(x)f(y) = f(xJ)f(yJ)

for all xJ, yJ ∈ G/J . And for x ∈ G we have

(f ◦ π)(x) = f(π(x)) = f(xJ) = f(x)

by construction. Finally, xJ ∈ ker f if and only if e = f(xJ) = f(x), so that

ker f = {xJ |x ∈ ker f} = (ker f)/J.

Therefore ker f is trivial if and only if (ker f)/J is trivial, which is equivalent to J = ker f .
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Example 11. Let G be a group and let N1 ≤ N2 be normal subgroups of G. Then N1

is contained in the kernel of the natural surjection π : G → G/N2. By the strong First
Isomorphism Theorem, this means that π(xN1) = π(x) = xN2 defines a homomorphism
π : G/N1 → G/N2.

For a particular instance of this scenario, let m,n ∈ N with m|n and take G = Z. Then
nZ ≤ mZ, and we have an epimorphism π : Z/nZ → Z/mZ given by a+ nZ 7→ a+mZ.
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