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To motivate what it means for a subgroup H of a group G to be normal, we continue to
use the analogy between congruences modulo n in Z and congruence modulo H in G. We
have seen that the congruence classes mod n in Z are precisely the members of the set

Z/nZ = {0 + nZ, 1 + nZ, 2 + nZ, . . . (n− 1) + nZ},

which are in one-to-one correspondence with the members of the set

Zn = {0, 1, 2, . . . , n− 1},

which are just the possible remainders after division by n. More precisely, the function

f : Zn → Z/nZ,
r 7→ r + nZ,

is (obviously) a bijection. Since Zn is known to be a group, Exercise 1 of Assignment 5.3
tells us that we can use f to transfer its group structure to Z/nZ. Chasing through the
details of that exercise, we find that the binary operation on Z/nZ becomes

(a+ nZ) + (b+ nZ) = (a⊕ b) + nZ = Rn(a+ b) + nZ, (1)

where Rn(k) is the remainder when an integer k is divided by n. Since a+b = qn+Rn(a+b)
for some q ∈ Z, we find (again) that (a+b)−Rn(a+b) is divisible by n. So a+b ≡ Rn(a+b)
(mod n), which means that

Rn(a+ b) + nZ = (a+ b) + nZ, (2)

since the cosets of nZ are just the equivalences classes under congruence mod n. Taken
together, equations (1) and (2) tell us that the rule

(a+ nZ) + (b+ nZ) := (a+ b) + nZ (3)

yields a well-defined binary operation on Z/nZ under which Z/nZ is a group (isomorphic
to Zn via f). Once again, we can attempt to generalize this situation by replacing Z by
an arbitrary group G, nZ by a subgroup H < G, and then rewriting (3) in multiplicative
notation:

(aH)(bH) := (ab)H. (4)

It must be understood that we are taking this to be the definition of multiplication of cosets
in G/H, based solely on our attempt to draw an analogy with the rule (3) that we derived
for Z/nZ. The concatenation (aH)(bH) has no meaning until we give it one. Our goal now
is to determine whether or not the definition of coset multiplication given in (4) turns the
coset space G/H into a group, in the same way that (3) turns Z/nZ into a group.
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As we will see, the only real question is whether or not (4) is a well-defined binary
operation. More specifically, if aH = a′H and bH = b′H for some a, a′, b, b′ ∈ G, we will
have (aH)(bH) = (a′H)(b′H) if and only if (ab)H = (a′b′)H. To see what this requires of
H, consider the case in which a ∈ H, a′ = e, and b′ = b ∈ G. The equation (ab)H = (a′b′)H
becomes

(ab)H = (eb)H ⇔ (ab)H = bH ⇔ (b−1ab)H = H ⇔ b−1ab ∈ H.

Because a ∈ H and b ∈ G were arbitrary this is equivalent to

b−1Hb ⊆ H for all b ∈ G. (N2)

Although it only arose as a special case, we will soon see that condition (N2) is both necessary
and sufficient for (4) to be well-defined. But first we provide several convenient reformulations
of (N2).

Lemma 1. Let G be a group and let H < G. The following conditions on H are equivalent.

(N1) aHa−1 ⊆ H for all a ∈ G.

(N2) b−1Hb ⊆ H for all b ∈ G.

(N3) xHx−1 = H for all x ∈ G.

(N4) xH = Hx for all x ∈ G.

Proof. (N1 ⇒ N2) Suppose that aHa−1 ⊆ H for all a ∈ G. Let b ∈ G and take a = b−1.
Then

b−1Hb = aHa−1 ⊆ H.

Since b ∈ H was arbitrary, this proves N2.

(N2 ⇒ N3) Suppose that b−1Hb ⊆ H for all b ∈ G. Let x ∈ G and set b = x−1. Then

xHx−1 = b−1Hb ⊆ H.

But if we take b = x we also have

x−1Hx ⊆ H ⇒ H ⊆ xHx−1.

We therefore have xHx−1 = H, by double containment. As x ∈ G was arbitrary, this proves
N3.

(N3 ⇒ N4) Clear.

(N4 ⇒ N1) Suppose xH = Hx for all x ∈ G. Let a ∈ G and set x = a. Then

aH = Ha ⇒ aHa−1 = H,

which certainly implies aHa−1 ⊆ H. Once again, since a ∈ G was arbitrary, we have proven
N1.

Definition. Let G be a group and H < G. We say that H is normal in G, denoted H ◁ G,
provided it satisfies any of the equivalent conditions N1–N4.
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Remarks. Condition N3 is frequently taken as “the” definition of normality. In situations
in which the normality of a subgroup needs to be confirmed directly (as opposed to simply
invoking a theorem), conditions N1 and N2 are the easiest to check, since they are logically
the weakest.

In light of Lemma 1, our work above shows that in order for the binary operation (4) to
be well-defined, the subgroup H must be normal in G. We will now prove the converse.

Theorem 1. Let G be a group and let H < G. The rule

(aH)(bH) := (ab)H

is a well-defined binary operation on G/H if and only if H ◁ G.

Proof. Suppose H ◁ G. Let a, a′, b, b′ ∈ G so that aH = a′H and bH = b′H. Then

(a′)−1a ∈ H and (b′)−1b ∈ H.

Since H ◁ G, using condition N2 we find that

(a′b′)−1ab = ((b′)−1b)b−1((a′)−1a)b ∈ ((b′)−1b)(b−1Hb) ⊆ ((b′)−1b)H = H.

But (a′b′)−1ab ∈ H if and only if (ab)H = (a′b′)H. This proves that for all a, a′, b, b′ ∈ G,

aH = a′H and bH = b′H ⇒ (ab)H = (a′b′)H.

This shows that the binary operation in question is indeed well-defined when H ◁G. Having
already established the converse, this completes the proof of Theorem 1.

It is now a simple matter to show that G/H is always a group when H ◁ G.

Corollary 1. Let G be a group and let H ◁ G. Then G/H is a group under (aH)(bH) =
(ab)H. The identity in G/H is the coset eH = H of the identity element e ∈ G, and the
inverse of aH ∈ G/H is (aH)−1 = a−1H.

Proof. Now that we know the binary operation on G/H is well-defined, we only need to
check that the group axioms are satisfied in G/H. Let aH, bH, cH ∈ G/H. Then

((aH)(bH))(cH) = ((ab)H)(cH) = ((ab)c)H = (a(bc))H = (aH)((bc)H) = (aH)((bH)(cH)),

which proves associativity. We also have

(aH)(H) = (aH)(eH) = (ae)H = aH = (ea)H = (eH)(aH) = (H)(aH),

which shows that H = eH is the identity coset. Finally,

(aH)(a−1H) = (aa−1)H = eH = (a−1a)H = (a−1H)(aH),

so that a−1H is the inverse of the coset aH.
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Example 1. If G is a group, its center Z(G) = {g ∈ G | gx = xg for all x ∈ G} is always
normal, since for any g ∈ Z(G) and any x ∈ G we have

gx = xg ⇒ gxg−1 = x ∈ Z(G).

Although there’s no general rule for what the group G/Z(G) “looks like,” there’s one
special situation that can be useful from time to time. Specifically:

Lemma 2. If G is a group and G/Z(G) is cyclic, then G is abelian.

Proof. Choose g so that G/Z(G) is generated by the coset g Z(G). Then the elements of
G/Z(G) all have the form (g Z(G))k = gk Z(G) for k ∈ Z. Because every element in G
belongs to one of these cosets, any x ∈ G has the form x = gkz for some k ∈ Z and
z ∈ Z(G). If y is also in G, then we also have y = gℓw for some ℓ ∈ Z and w ∈ Z(G). Then,
because z and w commute with all of G, we find that

xy = (gkz)(gℓw) = gkgℓzw = gk+ℓwz = gℓ+kwz = gℓgkwz = (gℓw)(gkz) = yx.

Therefore G is abelian, as claimed.

Example 2. Let Q = {±1,±i,±j,±k} denote the quaternion group, which was introduced
in Exercise 1.2.2 (using matrix notation). The elements ±1 are central (commute with every
other element of Q), and the binary operation in Q is completely determined by the relations

i2 = j2 = k2 = ijk = −1.

These imply that the elements ±i,±j and ±k have order 4. We can also see that Q is
nonabelian since

i2 = ijk ⇒ i = jk ⇒ ji = j2k = −k,

k2 = ijk ⇒ k = ij,

from which it follows that ij = k = −ji. Likewise one can show that ik = −ki and jk = −kj.
One says that i, j and k anticommute.

The computations above imply that Z(Q) = {±1}, and Example 1 tells us that Z(Q)◁Q.
Then, according to Lagrange’s theorem, Q/Z(Q) is a group of order

|Q/Z(Q)| = [Q : Z(Q)] =
|Q|

|Z(Q)|
=

8

2
= 4.

The elements of Q/Z(Q) are the cosets Z(Q), iZ(Q), jZ(Q) and kZ(Q). If ϵ is any one of
i, j or k, then

(ϵZ(Q))2 = (ϵZ(Q)) (ϵZ(Q)) = ϵ2Z(Q) = (−1)Z(Q) = Z(Q),

since −1 ∈ Z(Q). This shows that every nonidentity member of the quotient Q/Z(Q) has
order 2. In particular, Q/Z(Q) is not cyclic. This also follows from Lemma 2, since we know
that Q is nonabelian. However, Q/Z(Q) is abelian, by homework exercise (???). As we will
see later, up to isomorphism the only abelian groups of order 4 are Z4 and Z2 ⊕ Z2. We
conclude that Q/Z(Q) ∼= Z2 ⊕ Z2.
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