Linear Algebra
Assignment 3.2
Spring 2024

Exercise 1. Textbook exercise 1.3.14

Exercise 2. Textbook exercise 1.3.23

Exercise 3. Suppose that a 4×6 matrix $A=\left(\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array} \mathbf{a}_{6}\right)$ has reduced row echelon form

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & 1 & 0 & 4 \\
0 & 1 & 2 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Find a set \mathcal{B} of independent columns of A that is as large as possible, determine the rank of A, and express the remaining columns of A as linear combinations of those in \mathcal{B}.

Exercise 4. Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 5 \\
2 & 4 & 4 & -2 \\
0 & 0 & 5 & -10
\end{array}\right)
$$

a. Find a set \mathcal{B} of independent columns of A that is as large as possible, determine the rank of A, and express the remaining columns of A as linear combinations of those in \mathcal{B}.
b. Let B be the matrix obtained from A by reversing the order of its columns. Explain why $C(A)=C(B)$.
c. Repeat part a for B. Do you get the same results?

