Rank

Let A be an $m \times n$ matrix with

$$
\operatorname{rank}(A)=\# \text { pivots in } A=r .
$$

Then we must have

$$
r \leq m \quad \text { and } \quad r \leq n,
$$

since there can't be more than one pivot per row or column.

The extreme cases are of special interest.

Full Column Rank ($r=n$ and $n \leq m$)

1. All columns are pivot columns (columns are independent). No free variables in $A \mathbf{x}=\mathbf{b}$.
2. $\mathbf{N}(A)$ contains only the zero vector: $\mathbf{N}(A)=\{\mathbf{0}\}$.
3. If $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a solution, it is unique.

Full Row Rank $(r=m$ and $m \leq n)$

1. All rows are pivot rows and R_{0} has no zero rows (so $R=R_{0}$).
2. $A \mathbf{x}=\mathbf{b}$ has a solution for any $\mathbf{b} \in \mathbb{R}^{m}$.
3. The column space is all of $\mathbb{R}^{m}: \mathbf{C}(A)=\mathbb{R}^{m}$.
4. If $m<n$, then $\mathbf{N}(A) \neq\{\mathbf{0}\}$ and $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.

Rank and $A \mathbf{x}=\mathbf{b}$

Dimensions/Rank	Features	Solutions to $A \mathbf{x}=\mathbf{b}$
$r=m=n$	Square and invertible	Exactly 1 solution
$r=m$ and $r<n$	Short and wide	∞ solutions
$r<m$ and $r=n$	Tall and thin	0 or 1 solutions
$r<m$ and $r<n$	Not full rank	0 or ∞ solutions

