Let A be an $m \times n$ matrix with

rank(A) = # pivots in A = r.

Then we must have

 $r \leq m$ and $r \leq n$,

since there can't be more than one pivot per row or column.

The extreme cases are of special interest.

Full Column Rank $(r = n \text{ and } n \leq m)$

 All columns are pivot columns (columns are independent). No free variables in Ax = b.

2. N(A) contains only the zero vector: $N(A) = \{0\}$.

3. If $A\mathbf{x} = \mathbf{b}$ has a solution, it is unique.

- 1. All rows are pivot rows and R_0 has no zero rows (so $R = R_0$).
- 2. $A\mathbf{x} = \mathbf{b}$ has a solution for any $\mathbf{b} \in \mathbb{R}^m$.
- 3. The column space is all of \mathbb{R}^m : $\mathbf{C}(A) = \mathbb{R}^m$.
- 4. If m < n, then $N(A) \neq \{0\}$ and $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.

Dimensions/Rank	Features	Solutions to $A\mathbf{x} = \mathbf{b}$
r = m = n	Square and invertible	Exactly 1 solution
r = m and $r < n$	Short and wide	∞ solutions
r < m and $r = n$	Tall and thin	0 or 1 solutions
<i>r</i> < <i>m</i> and <i>r</i> < <i>n</i>	Not full rank	0 or ∞ solutions