We put the system on the left and the corresponding augmented matrix on the right. Denote the *i*th equation by E_i and the *i*th row of the augmented matrix by R_i .

 $\longrightarrow \begin{pmatrix} 1 & 5 & 7 \\ -2 & -7 & -5 \end{pmatrix}$ $[2E_1 + E_2 \rightarrow E_2]$ $[2R_1 + R_2 \rightarrow R_2]$ $x_1 + 5x_2 = 7$ $3x_2 = 9$ $\left(\begin{array}{cc|c}1 & 5 & 7\\0 & 3 & 9\end{array}\right)$ $\left[\frac{1}{2}R_2 \rightarrow R_2\right]$ $\left[\frac{1}{2}E_2 \rightarrow E_2\right]$

So the only solution is $x_1 = -8$ and $x_2 = 3$.

Example 2

Solve the linear system. As above, denote the *i*th equation by E_i and the *i*th row of the augmented matrix by R_i .

$$\begin{bmatrix} E_1 \leftrightarrow E_2 \end{bmatrix} \qquad \qquad \begin{bmatrix} R_1 \leftrightarrow R_2 \end{bmatrix}$$

x_1	+4 <i>x</i> ₂	+3 <i>x</i> 3	= -2		/ 1	4	3	-2 `	١
	<i>x</i> ₂	+5 <i>x</i> 3	= -4		0	1	5	-4	
2 <i>x</i> ₁	+7 <i>x</i> ₂	$-x_{3}$	= 1		2	7	-1	1,	/
[-	-2 <i>E</i> ₁ +	$E_3 \rightarrow E_3$	= ₃]	[-	2 <i>R</i> 1	+ R	$R_3 \rightarrow R_3$	R ₃]	

$x_1 + 4x_2 + 3x_3 = -2 x_2 + 5x_3 = -4 -x_2 -7x_3 = 5$	$\left(\begin{array}{cccc c} 1 & 4 & 3 & -2 \\ 0 & 1 & 5 & -4 \\ 0 & -1 & -7 & 5 \end{array}\right)$
$[E_2 + E_3 \rightarrow E_3]$	$[R_2 + R_3 \rightarrow R_3]$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\left[-\frac{1}{2}E_3 \to E_3\right]$	$\left[-\frac{1}{2}R_3 \to R_3\right]$

$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{bmatrix} -5E_3 + E_2 \rightarrow E_2 \end{bmatrix}$ $\begin{bmatrix} -3E_3 + E_1 \rightarrow E_1 \end{bmatrix}$	$\begin{bmatrix} -5R_3 + R_2 \rightarrow R_2 \end{bmatrix}$ $\begin{bmatrix} -3R_3 + R_1 \rightarrow R_1 \end{bmatrix}$
$x_1 + 4x_2 = -\frac{1}{2}$ $x_2 = -\frac{3}{2}$ $x_3 = -\frac{1}{2}$	$\left(\begin{array}{ccc c} 1 & 4 & 0 & -\frac{3}{2} \\ 0 & 1 & 0 & -\frac{3}{2} \\ 0 & 0 & 1 & -\frac{1}{2} \end{array}\right)$
$\left[-4E_2+E_1\to E_1\right]$	$\left[-4R_2+R_1\to R_1\right]$

So the only solution is
$$x_1 = \frac{11}{2}$$
, $x_2 = -\frac{3}{2}$ and $x_3 = -\frac{1}{2}$.

Use augmented matrices to solve the linear system.

$$\begin{bmatrix} -2R_1 + R_2 \to R_2 \\ [-R_1 + R_3 \to R_3] \end{bmatrix}$$

$$\begin{pmatrix} 1 & -2 & -6 & | 12 \\ 0 & 8 & 24 & -41 \\ 0 & -2 & -6 & | 10 \end{pmatrix} \begin{bmatrix} R_2 \leftrightarrow R_3 \end{bmatrix} \begin{pmatrix} 1 & -2 & -6 & | 12 \\ 0 & -2 & -6 & | 10 \\ 0 & 8 & 24 & -41 \end{pmatrix}$$

Finally $4R_2 + R_3 \rightarrow R_3$ produces

$$\begin{pmatrix} 1 & -2 & -6 & | 12 \\ 0 & -2 & -6 & | 10 \\ 0 & 0 & 0 & | -1 \end{pmatrix} \xrightarrow{x_1} \begin{array}{c} x_1 & -2x_2 & -6x_3 & = 12 \\ & & & -2x_2 & -6x_3 & = 10 \\ & & & & 0 & = -1 \end{array}$$

This system clearly has no solutions .

Example 4

Use augmented matrices to solve the (nearly identical) system.

This time the exact same row operations yield

$$\begin{pmatrix} 1 & -2 & -6 & | & 12 \\ 0 & -2 & -6 & | & 10 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \begin{bmatrix} -R_2 + R_1 \to R_1 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & -2 & -6 & | & 10 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

After the scaling $\left[-\frac{1}{2}R_2 \rightarrow R_2\right]$ we finally end up with

This tells us that
$$|x_1 = 2$$
 and $x_2 = -3x_3 - 5$ for any choice of x_3 .

That is, there are *infinitely many* solutions.