Example 1 Revisited

We put the system on the left and the corresponding augmented matrix on the right. Denote the i th equation by E_{i} and the i th row of the augmented matrix by R_{i}.

$$
\begin{aligned}
& \begin{array}{cccc}
x_{1} & +5 x_{2} & = & 7 \\
-2 x_{1} & -7 x_{2} & = & -5
\end{array} \quad \leadsto \quad\left(\begin{array}{cc|c}
1 & 5 & 7 \\
-2 & -7 & -5
\end{array}\right) \\
& {\left[2 E_{1}+E_{2} \rightarrow E_{2}\right]} \\
& {\left[2 R_{1}+R_{2} \rightarrow R_{2}\right]} \\
& \begin{aligned}
x_{1}+5 x_{2} & =7 \\
3 x_{2} & =9
\end{aligned} \quad\left(\begin{array}{ll|l}
1 & 5 & 7 \\
0 & 3 & 9
\end{array}\right) \\
& {\left[\frac{1}{3} E_{2} \rightarrow E_{2}\right]} \\
& {\left[\frac{1}{3} R_{2} \rightarrow R_{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
x_{1}+5 x_{2} & =7 \\
x_{2} & =3
\end{aligned} \quad\left(\begin{array}{ll|l}
1 & 5 & 7 \\
0 & 1 & 3
\end{array}\right) \\
& {\left[-5 E_{2}+E_{1} \rightarrow E_{2}\right] \quad\left[-5 R_{2}+R_{1} \rightarrow R_{1}\right]} \\
& x_{1} \begin{array}{ll}
& = \\
x_{2} & = \\
x_{2}
\end{array} \quad\left(\begin{array}{cc|c}
1 & 0 & -8 \\
0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

So the only solution is $x_{1}=-8$ and $x_{2}=3$.

Example 2

Solve the linear system. As above, denote the i th equation by E_{i} and the i th row of the augmented matrix by R_{i}.

$$
\begin{array}{ccc}
x_{2}+5 x_{3} & =-4 \\
x_{1}+4 x_{2}+3 x_{3} & =-2 \\
2 x_{1}+7 x_{2} & -x_{3} & =1
\end{array} \quad \leadsto \quad\left(\begin{array}{ccc|c}
0 & 1 & 5 & -4 \\
1 & 4 & 3 & -2 \\
2 & 7 & -1 & 1
\end{array}\right)
$$

$$
\left[E_{1} \leftrightarrow E_{2}\right] \quad\left[R_{1} \leftrightarrow R_{2}\right]
$$

$$
\begin{array}{cccc}
x_{1} & +4 x_{2} & +3 x_{3} & =-2 \\
& x_{2} & +5 x_{3} & =-4 \\
& 2 x_{1} & +7 x_{2} & -x_{3}
\end{array}=1
$$

$$
\left(\begin{array}{ccc|c}
1 & 4 & 3 & -2 \\
0 & 1 & 5 & -4 \\
2 & 7 & -1 & 1
\end{array}\right)
$$

$$
\left[-2 E_{1}+E_{3} \rightarrow E_{3}\right]
$$

$$
\left[-2 R_{1}+R_{3} \rightarrow R_{3}\right]
$$

$$
\left.\begin{array}{ccc}
x_{1}+4 x_{2} & +3 x_{3} & =-2 \\
& x_{2} & +5 x_{3} \\
-x_{2} & -7 x_{3} & =5
\end{array}\right) ~\left(\begin{array}{ccc|c}
1 & 4 & 3 & -2 \\
0 & 1 & 5 & -4 \\
0 & -1 & -7 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& x_{1}+4 x_{2}+3 x_{3}=-2 \\
& x_{2}+5 x_{3}=-4 \\
& x_{3}=-\frac{1}{2} \\
& {\left[-5 E_{3}+E_{2} \rightarrow E_{2}\right]} \\
& {\left[-3 E_{3}+E_{1} \rightarrow E_{1}\right]} \\
& x_{1}+4 x_{2}=-\frac{1}{2} \\
& x_{2}=-\frac{3}{2} \\
& x_{3}=-\frac{1}{2} \\
& {\left[-4 E_{2}+E_{1} \rightarrow E_{1}\right]} \\
& \left(\begin{array}{lll|l}
1 & 4 & 3 & -2 \\
0 & 1 & 5 & -4 \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right) \\
& {\left[-5 R_{3}+R_{2} \rightarrow R_{2}\right]} \\
& {\left[-3 R_{3}+R_{1} \rightarrow R_{1}\right]} \\
& \left(\begin{array}{lll|l}
1 & 4 & 0 & -\frac{3}{2} \\
0 & 1 & 0 & -\frac{3}{2} \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right) \\
& {\left[-4 R_{2}+R_{1} \rightarrow R_{1}\right]}
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & =\frac{11}{2} \\
x_{2} & =-\frac{3}{2} \\
x_{3} & =-\frac{1}{2}
\end{aligned} \quad\left(\begin{array}{lll|r}
1 & 0 & 0 & \frac{11}{2} \\
0 & 1 & 0 & -\frac{3}{2} \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right)
$$

So the only solution is $x_{1}=\frac{11}{2}, x_{2}=-\frac{3}{2}$ and $x_{3}=-\frac{1}{2}$.

Example 3

Use augmented matrices to solve the linear system.

$$
\begin{array}{cccc}
x_{1} & -2 x_{2} & -6 x_{3} & =12 \\
2 x_{1} & +4 x_{2} & +12 x_{3} & =-17 \\
x_{1} & -4 x_{2} & -12 x_{3} & =22
\end{array} \leadsto\left(\begin{array}{ccc|c}
1 & -2 & -6 & 12 \\
2 & 4 & 12 & -17 \\
1 & -4 & -12 & 22
\end{array}\right) ~\left(\begin{array}{rl}
\\
& {\left[-2 R_{1}+R_{2} \rightarrow R_{2}\right]} \\
& {\left[-R_{1}+R_{3} \rightarrow R_{3}\right]}
\end{array}\right.
$$

$$
\left(\begin{array}{ccc|c}
1 & -2 & -6 & 12 \\
0 & 8 & 24 & -41 \\
0 & -2 & -6 & 10
\end{array}\right)\left[R_{2} \leftrightarrow R_{3}\right]\left(\begin{array}{ccc|c}
1 & -2 & -6 & 12 \\
0 & -2 & -6 & 10 \\
0 & 8 & 24 & -41
\end{array}\right)
$$

Finally $4 R_{2}+R_{3} \rightarrow R_{3}$ produces

$$
\left(\begin{array}{ccc|c}
1 & -2 & -6 & 12 \\
0 & -2 & -6 & 10 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \leadsto \quad \begin{array}{ccccc}
x_{1} & -2 x_{2} & -6 x_{3} & =12 \\
& & & & -2 x_{2} \\
-6 x_{3} & =10 \\
& & & & 0
\end{array}=-1
$$

This system clearly has no solutions.

Example 4

Use augmented matrices to solve the (nearly identical) system.

$$
\begin{array}{cccc}
x_{1} & -2 x_{2} & -6 x_{3} & =12 \\
2 x_{1} & +4 x_{2} & +12 x_{3} & =-16 \\
x_{1} & -4 x_{2} & -12 x_{3} & =22
\end{array} \quad \leadsto \quad\left(\begin{array}{ccc|c}
1 & -2 & -6 & 12 \\
2 & 4 & 12 & -16 \\
1 & -4 & -12 & 22
\end{array}\right)
$$

This time the exact same row operations yield

$$
\left(\begin{array}{ccc|c}
1 & -2 & -6 & 12 \\
0 & -2 & -6 & 10 \\
0 & 0 & 0 & 0
\end{array}\right)\left[-R_{2}+R_{1} \rightarrow R_{1}\right]\left(\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & -2 & -6 & 10 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

After the scaling [$-\frac{1}{2} R_{2} \rightarrow R_{2}$] we finally end up with

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 3 & -5 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \leadsto \leadsto \quad \begin{array}{cccc}
x_{1} & & & =2 \\
& & x_{2} & +3 x_{3} \\
=-5 \\
& & & 0
\end{array}=0
$$

This tells us that $x_{1}=2$ and $x_{2}=-3 x_{3}-5$ for any choice of x_{3}.

That is, there are infinitely many solutions.

