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The Classification of Finite Cyclic groups tells us that for each n ∈ N, there is (up
to isomorphism) exactly one cyclic group of order n, namely Z/nZ. It is also possible to
completely characterize the finite abelian groups as those that are (internal) direct sums of
certain cyclic subgroups. Somewhat more precisely, every (additive) finite abelian group A
is the internal direct sum

A = ⟨a1⟩ ⊕ · · · ⊕ ⟨ar⟩ ∼= (Z/n1Z)⊕ · · · (Z/nrZ),

for certain ai ∈ A with |ai| = ni. Under appropriate hypotheses on the orders ni, this decom-
position is unique to A, and gives a complete description of the group-theoretic structure of
A. The precise version of these statements is known as the Fundamental Theorem of Finite
Abelian groups, which we will state and prove later.

So how can we determine the cyclic summands of a finite abelian group A given that we
know so little about it? In the decomposition above, notice that since ni = |ai| = |⟨ai⟩|,
so that nia = 0 for all a ∈ ⟨ai⟩, by Lagrange’s Theorem. Recall that for any n ∈ N, the
n-torsion subgroup of A is

A[n] := {a ∈ A |na = 0},
which consists of those elements of A whose order divides n. So in the case above we have
⟨ai⟩ ≤ A[ni], with ni||A|. This suggests that the torsion subgroups of A, which are defined
independent of any direct sum decomposition of A, are the place to start looking for the
cyclic summands of A.

Given an abelian group A (which need not be finite) and an integer n ≥ 1, multiplicative
factorizations of n very naturally give rise to direct sum decompositions of A[n]. We begin
by noting that if n = dm with d,m ∈ N then:

• A[d] ≤ A[n];

• for all a ∈ A[n], ma ∈ A[d].

The proofs of these statements are easy exercises, and we can freely interchange m and d in
both, since dm = md. We can now prove:

Theorem 1. Let A be an abelian group and let n ∈ N. If n = dm for some m, d ∈ N with
gcd(d,m) = 1, then A[n] is the internal direct sum

A[n] = A[d]⊕ A[m].
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Proof. Use Bézout’s Lemma to write 1 = rd+ sm for some r, s ∈ Z. Then for any a ∈ A[n]
we have

a = 1a = (rd+ sm)a = (rd)a+ (sm)a = r(da) + s(ma) ∈ A[m] + A[d],

by the second remark above. Thus A[n] ≤ A[m] + A[d]. The first remark tells us that
A[m] and A[d] are subgroups of A[n], so that A[m] + A[d] ≤ A[n], too. Therefore A[n] =
A[m] + A[d].

To prove that the sum is direct we must show A[m] ∩ A[d] is trivial. To that end, let
a ∈ A[m] ∩ A[d]. Then |a| divides both m and d. But gcd(m, d) = 1, so this implies that
|a| = 1 and hence a = 0. This completes the proof.

Corollary 1. Let A be an abelian group and let n ≥ 2 be an integer. Write

n = pe11 · · · perr
where the pi are distinct primes and ei ≥ 1 for all i. Then A[n] is the internal direct sum

A[n] = A[pe11 ]⊕ · · · ⊕ A[perr ] =
r⊕

i=1

A[peii ].

Proof. Since p
ej
j and pe

j+1

j+1 · · · perr are relatively prime for j = 1, . . . , r− 1, Theorem 1 tells us
that we have internal direct sums

A[n] = A[pe11 ]⊕ A[pe22 · · · perr ]

= A[pe11 ]⊕ A[pe22 ]⊕ A[pe33 · · · perr ]

...

= A[pe11 ]⊕ A[pe22 ]⊕ · · · ⊕ A[perr ].

Let p be a prime. Because a prime power pe has no nontrivial factorizations with relatively
prime factors, the decomposition of Corollary 1 clearly can be carried no further. So we turn
to an analysis of the pe-torsion subgroups A[pe] of an abelian group A. Because every member
of A[pe] has order dividing pe, and the only divisors of pe are of the form pj, we conclude
that the order of every element of A[pe] is a power of p.

A group with the property that every one of its elements has order equal to a power of
p is called a p-group. A p-group (abelian or not) can certainly have infinite order. Take the
direct sum (or product) of an infinite number of copies of Z/pZ, for instance (the product is
actually an uncountable p-group). But the order of a finite p-group must always be a power
of p. For general groups this is an easy consequence of Cauchy’s theorem, which we won’t
get into here. But for finite abelian p-groups, however, all we need is strong induction.

Lemma 1. Let p be a prime number. The order of a finite abelian p-group is a power of p.

Proof. Let A be a finite abelian p-group. We (strongly) induct on the order of A. If |A| = 1,
the conclusion is immediate. Now suppose |A| > 1 and assume that we have proven every
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finite abelian p-group of order strictly less than |A| has order equal to a power of p. Choose
0 ̸= a ∈ A (why is this possible?) and let A′ = ⟨a⟩. Because A is a p-group, we know that
|A′| = |a| is a power of p. Since A/A′ is a finite abelian p-group and |A/A′| = |A|/|A′| < |A|
(because |A′| = |a| > 1), the inductive hypothesis implies that |A/A′| is also a power of p.
Therefore |A| = |A/A′| · |A′| is a power of p as well. This completes the inductive step and
completes the proof.

Corollary 2. If A is a finite abelian group, p is a prime and e ≥ 0, then the order of A[pe]
is a power of p.

If A is a finite abelian group of order n, then A = A[n], by Lagrange’s theorem. Thus:

Theorem 2. Let A be a finite abelian group of order n = pe11 · · · perr , where the pi are distinct
primes and each ei ≥ 1. Then A is the internal direct sum

A = A[pe11 ]⊕ · · ·A[perr ],

and |A[peii ]| = peii for all i.

Proof. Since A = A[n], the direct sum decomposition follows from Corollary 1. Corollary 2

tells us that |A[peii ]| = pfii for some fi ≥ 0. From the direct sum we then have

pe11 · · · perr = n = |A| = |A[pe11 ]| · |A[pe22 ]| · · · |A[perr ]| = pf11 pf22 · · · pfrr .

We now appeal to the Fundamental Theorem of Arithmetic to conclude that ei = fi for all
i, and we’re finished.

It’s interesting to note that our proof that |A[peii ]| = peii is completely indirect. We only
arrived at this conclusion because Corollary 2 and the Fundamental Theorem of Arithmetic
ensured there were no other options. We didn’t actually count anything!

Another interesting observation is that the conclusions of Theorem 2 remain valid if we
weaken the hypothesis on the exponents in the prime factorization of n to ei ≥ 0, since

A[1] = {0}.

So, for instance, if we instead wrote the prime factorization of n in the more abstract form

n =
∏
p

pep , ep ∈ N0,

then we’d still have the internal direct sum

A =
⊕
p

A[pep ]

with |A[pep ]| = pep for all p.

On the other hand, if we replace the order n of A by any multiple n′ = kn, the direct
sum decomposition of Theorem 2 is still valid since

A[pei+fi
i ] = A[peii ]
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for any fi ≥ 0, and A[qf ] = {0} for any prime q not dividing n, by Lagrange’s theorem. The
formula for the orders of the p-power torsion subgroups of A may no longer hold in this case,
however.

Along these same lines, we can also express the direct sum decomposition of Theorem 2
in a way that makes no reference to the exponents ei at all. Because

A[p] ≤ A[p2] ≤ A[p3] ≤ · · ·

and the union of an ascending chain of subgroups is always a subgroup (exercise), we can
define the p-power torsion subgroup of A to be

A(p) =
∞⋃
e=1

A[pe]. (1)

A(p) consists of all elements of A whose order is any power of p. In the notation of Theorem
2 we clearly have A(pi) = A[peii ] for every pi dividing the order of A, so that the internal
direct sum decomposition becomes

A = A(p1)⊕ A(p2)⊕ · · ·A(pr).

This p-power torsion notation is somewhat simpler, but the notation A(p) alone doesn’t
include enough information to immediately tell us the size of this subgroup. But this actually
has an aesthetic advantage. Since we have already seen that A(q) = {0} for q not dividing
|A|, we can now rewrite (1) as

A =
⊕
p

A(p), (2)

which makes no reference to the exponents occurring in the prime factorization of A. Theo-
rem 2 then tells us that

|A(p)| = pe

for every prime p, where pe is the largest power of p dividing n = |A|.

The “exponent free” internal direct sum decomposition (2) actually holds for any torison
abelian group A (one in which every element has finite order, although |A| itself need not
be finite). The proof requires a modification of the argument used in Corollary 1 and is left
as an exercise for the reader.
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