Finite Abelian Groups II:
Finite Abelian p-Groups

R. C. Daileda

Our goal now is to decompose any finite abelian p-group (p a prime) as an internal direct
sum of cyclic subgroups. First we need two lemmas.

Lemma 1. Let A be an additive abelian group and suppose a € A has order p" where p is
prime and r > 0. Then for any k € Ny:
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1 otherwise.

Proof. We have

|pka| _ |a’| _ pT _ pT _ pr—min{k,r}‘

ged(p¥, la]) — ged(ph,pr)  printkrt

]

Now let A be a finite abelian p-group. Choose a; € A whose order p™ is as large as
possible. Let A; = (ay). Then A/A; is a finite abelian p-group and we have the canonical
epimorphism 7 : A — A/A;. Given b € A, because 7 is a homomorphism, we know that
|7(b)| in A/A; must divide |b] in A. In order for our argument below to work, we need to
know that, in fact, |b| = |7(b)|. But in general there’s nothing to prevent |b| from being
strictly larger than |7(b)|. Fortunately, m(a) = m(b) for any a € b+ A, so it might be
possible to “adjust” b by an element of A; to get a € A with |a| = |7(a)| and 7(a) = 7 (b).
The next lemma shows that this is indeed always possible.

Lemma 2. Let A be a finite abelian p-group, and suppose a; € A has mazimum possible
order p". Set Ay = (a1) and let m: A — AJA; denote the canonical epimorphism. For any
b e A, there exists a € A so that w(a) = 7(b) and |a| = |7(D)].

Proof. Let ¢ € m(b) = b+ A so that 7(c¢) = 7(b). Then
p" = m()] = |r(c)] divides [c| =p”,
which implies that » < s. Furthermore, since |7(c)| = p" in A/A;, we have
Ay =p'r(c)=7(p'c) = pce Ay = pc=ny
for some n € N. Write n = p*t with & > 0 and pt{¢. Then
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This means we can compute the order of p"c = na; = p*(ta;) in two ways using Lemma 1.
On the one hand
s—min{r,s} _ _s—r

lp"c| =p p since r < s.

On the other hand

r1—min{k,r1 }

" (tar)| = p

Since both elements have the same order we conclude that

s—r=r; —min{k,r}. (1)

If £ > ry, (1) becomes s—r =0 or r = s. That is, |¢| = p® = p". Since w(c) = 7(b), we can
take a = ¢ to prove the lemma. If k£ <, (1) becomes s —r=r; —kork—r=r; —s>0,
since p" is the largest possible order of elements in A, and |c¢| = p*. Therefore k > r and we
have

pre=pttay) = p’(p" "tay) = p'd],
where a} = p*"ta; € A, since p*~" € N. We then have

p'(c—a})=0.

This shows that |c — a}| divides p". But we also know that |w(c—d})| = |7 (c)| = |x(b)| =p",
which shows that |c¢ — a/| is divisible by p". We conclude that a = ¢ — @} has order p" and
satisfies 7(a) = 7(c) = w(b), as needed. O

Example 1. Assume p is an odd prime and consider the finite abelian p-group A = (Z/pZ)®
(Z/p*Z). The element (1,1) has order p?, which is as large as possible, since A = A[p?]. So,
in the notation of Lemma 2, we have a; = (1,1) and A; = ((1,1)). Since |A/A| = p*/p* = p,
every nontrivial element of A/A; has order p.

The element b = (1,2) does not belong to A;, since (1,2) = k(1,1) = (k, k) would imply
k=1 (mod p) and k = 2 (mod p?), which is impossible. So b+ A; has order p in A/A;.
However, (1,2) does not have order p in A since p(1,2) = (p, 2p) = (0,2p) # (0,0). Following
the proof of Lemma 1 we write pb = p(1,2) = (0,2p) = (2p,2p) = 2p(1,1) = 2pa,, so that
p(b—2a;) =0. So a =0b— 2a; has order pin A and a = b (mod A).

Theorem 1. Let p be a prime and let A be a finite abelian p-group. Then there is a sequence
of positive integers vy > ro > - -+ > 1y so that A is the internal direct sum

A=CpM)eC@p™) e - aCp™),

where each C(p™) is a cyclic subgroup of A of order p'.

Proof. We induct on |A|. When |A| = 1, A has no nontrivial cyclic subgroups. We may
therefore take the sequence {r;} to be empty, since any direct sum indexed by the empty
set is understood to be the trivial group. So assume |A| > 1 and that we have proven the
theorem for all finite abelian p-groups of order strictly less than |A|. As in Lemma 2, choose
a; € A with |a;| = p™ as large as possible, and set A; = (a;). Since |A/A;| is a finite



abelian p-group whose order is less than |A|, the inductive hypothesis implies that A/A; is
an internal direct sum

AJA =C(p™?) D CH™) - & Cpy), (2)

where each C(p™) is a cyclic subgroup of A/A; with order p"i, and ro > 13 > --- > 13 > 1.
For each i write
Cp") = (b + A1).

Then b; + Ay has order p™ and we can use Lemma 2 to find a; € A so that a; + A; = b; + Ay
and |a;| = p". In particular, C'(p") = (a; + A;) for all 7. Also note that |ay| = p™ < p™, by
our choice of a, so that r; > ry.

We claim that the sum
AL @ (ag) ® (as) ® -+~ ® (ag) (3)

is direct. To see why, suppose that
niay + noas + - - +ngax =0
in A. Apply the canonical epimorphism 7 : A — A/A; to obtain

0 =nym(ar) + nom(ag) + - - - + ngm(ag)
= ny(ag + Ar) + -+ ng(ar + Ar).

Because each C(p") = (a; + A;), and the sum of the C(p™) is direct, it must be the case
that n;(a; + Ay) = Ay for all i. Since |a; + A;| = p™, it follows that p™ divides n; for all i.
But we also have |a;| = p™, so this implies n;a; = 0 in A. Therefore, the equality

n1a1+n2a2+--~+nkak:0

implies that n;a; = 0 for all 2 < i < k, and therefore n;a; = 0 as well. This proves the sum
(3) is direct.

The final step is to show that A is actually equal to the direct sum. This can be accom-
plished with a quick counting argument. First of all

[{ai)| = |ai| = p™ = [C(p")
So by (2) and Lagrange’s theorem

A k k
A 1A/A = TTICw)] =T el
i=2 i=2
Therefore i
Al = A [ [ a:)] = A1 & (a2) @ (a3) © -+~ & {ax)]-
i=2

Since the sum on the right is a subgroup of A, this implies that the two groups coincide. [

Given a finite abelian p-group A, the tuple (71,7, ...,7%) of exponents occurring in the
direct sum decomposition of Theorem 1 will be called the type of A. Our final goal is to show



that the type of a finite abelian p-group is unique. That is, if A also has type (s1, S2,. .., S¢),
then

(ri,7m9, ..., 7%) = (81,82, ..., Sp).
Equivalently, k = ¢ and r; = s; for all 7.
Once again we induct on |A|. When |A| = 1 the only possible type is the empty tuple (),

which is therefore unique. Now suppose |A| > 1 and that we have proven the type of any
smaller abelian p-group is unique. Write

(7’1,7’2,...,7”k> = (Tl,rg,...77’k,“,1,1,...,1),
—_———
L ones
(81,82, +,80) = (81,892, -+, Se—p, 1, 1,..., 1),
—_——

v ones

where 74, > 2, 54, > 2, and we allow ;t = 0 or v = 0, if necessary. Then pA is a finite
abelian p-group of types
(7’1 — 1,7’2— 17""Tk_ﬂ_ 1),

(s1— 1,89 —1,...,8,—1),

since pC(p") is a cyclic group of order p"~! (why?). Because |pA| < |A| (why?), the inductive
hypothesis implies that

(rm—1rm—1,.. .y —1)=(s1— 1,59 —1,...,8_, —1),

sothat k —py=¢—v=mandr;, —1=s; — 1 for « < m. We then have r; = s; for : < m
and the order of A is therefore

pT1+T2+"'+T‘m+IJ — p51+52+"'+5m+l"

Because r; = s; for all © < m, it follows that © = v, and hence k = ¢, since k — u = ¢ — v.
And since r; = s; = 1 for m < i < k, and k = ¢, we finally have

(7’1,7‘2, v 7Tk) = (81a827 .. 'asf)7

as needed. This proves that the type of A is unique, which completes the inductive step and
finishes our proof. To summarize:

Theorem 2. Let A be a finite abelian p-group. The exponentsri > 19 > --- > 11 of Theorem
1 are unique.
Because every cyclic group of order n is isomorphic to Z/nZ, as an immediate corollary

to Theorems 1 and 2 we obtain

Corollary 1. Let A be a finite abelian p-group. Then there is a unique Sequence of positive
integers ry > 1y > -+ > 1) so that

A% (Z/pT) ® (Zfp"L) & & (Z/pT).

Notice that if A is an abelian p-group of order p¢, and we decompose A as in Corollary
1, then

pe = ‘A’ = ‘(Z/pTIZ) D (Z/pTQZ) D---D (Z/prkZ)‘ = pﬁpr? .. .prk — pT1+T2+'“+rk'



That is,
e=ri+rot---+r, with ri>r>--->r, >1,

which is called a partition of e. It follows that:
Corollary 2. The isomorphism classes of abelian p-groups of order p° correspond to the

integer partitions of e.

Example 2. Let’s classify the finite abelian p-groups of order p°, up to isomorphism.
According to Corollary 2, the isomorphism classes correspond to partitions of e = 5. These
are

(1,1,1,1,1),(2,1,1,1),(2,2,1),(3,1,1),(3,2), (4, 1), (5).
and the corresponding groups representing each class are
(Z/pZ)°, (Z/v’L)® (Z/pL)*, (Z/v°L)* & (Z/pL),
(Z/p°Z) & (Z/pZ)*, (Z/p°L) & (Z/p°Z),
(Z/v'Z) @ (Z/pZ), Z/p’L.

It is important to note that no two groups in this list can be isomorphic.



