
Finite Abelian Groups II:

Finite Abelian p-Groups

R. C. Daileda

Our goal now is to decompose any finite abelian p-group (p a prime) as an internal direct
sum of cyclic subgroups. First we need two lemmas.

Lemma 1. Let A be an additive abelian group and suppose a ∈ A has order pr where p is
prime and r ≥ 0. Then for any k ∈ N0:

|pka| = pr−min{k,r} =

{
pr−k if k ≤ r,

1 otherwise.

Proof. We have

|pka| = |a|
gcd(pk, |a|)

=
pr

gcd(pk, pr)
=

pr

pmin{k,r} = pr−min{k,r}.

Now let A be a finite abelian p-group. Choose a1 ∈ A whose order pr1 is as large as
possible. Let A1 = ⟨a1⟩. Then A/A1 is a finite abelian p-group and we have the canonical
epimorphism π : A → A/A1. Given b ∈ A, because π is a homomorphism, we know that
|π(b)| in A/A1 must divide |b| in A. In order for our argument below to work, we need to
know that, in fact, |b| = |π(b)|. But in general there’s nothing to prevent |b| from being
strictly larger than |π(b)|. Fortunately, π(a) = π(b) for any a ∈ b + A1, so it might be
possible to “adjust” b by an element of A1 to get a ∈ A with |a| = |π(a)| and π(a) = π(b).
The next lemma shows that this is indeed always possible.

Lemma 2. Let A be a finite abelian p-group, and suppose a1 ∈ A has maximum possible
order pr1. Set A1 = ⟨a1⟩ and let π : A → A/A1 denote the canonical epimorphism. For any
b ∈ A, there exists a ∈ A so that π(a) = π(b) and |a| = |π(b)|.

Proof. Let c ∈ π(b) = b+ A1 so that π(c) = π(b). Then

pr = |π(b)| = |π(c)| divides |c| = ps,

which implies that r ≤ s. Furthermore, since |π(c)| = pr in A/A1, we have

A1 = prπ(c) = π(prc) ⇒ prc ∈ A1 ⇒ prc = na1

for some n ∈ N. Write n = pkt with k ≥ 0 and p ∤ t. Then

|ta1| =
|a1|

gcd(t, |a1|)
=

pr1

gcd(t, pr1)
= pr1 .
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This means we can compute the order of prc = na1 = pk(ta1) in two ways using Lemma 1.
On the one hand

|prc| = ps−min{r,s} = ps−r since r ≤ s.

On the other hand
|pk(ta1)| = pr1−min{k,r1}.

Since both elements have the same order we conclude that

s− r = r1 −min{k, r1}. (1)

If k > r1, (1) becomes s−r = 0 or r = s. That is, |c| = ps = pr. Since π(c) = π(b), we can
take a = c to prove the lemma. If k ≤ r1, (1) becomes s− r = r1 − k or k − r = r1 − s ≥ 0,
since pr1 is the largest possible order of elements in A, and |c| = ps. Therefore k ≥ r and we
have

prc = pk(ta1) = pr(pk−rta1) = pra′1,

where a′1 = pk−rta1 ∈ A1, since pk−r ∈ N. We then have

pr(c− a′1) = 0.

This shows that |c− a′1| divides pr. But we also know that |π(c− a′1)| = |π(c)| = |π(b)| = pr,
which shows that |c − a′1| is divisible by pr. We conclude that a = c − a′1 has order pr and
satisfies π(a) = π(c) = π(b), as needed.

Example 1. Assume p is an odd prime and consider the finite abelian p-group A = (Z/pZ)⊕
(Z/p2Z). The element (1, 1) has order p2, which is as large as possible, since A = A[p2]. So,
in the notation of Lemma 2, we have a1 = (1, 1) and A1 = ⟨(1, 1)⟩. Since |A/A1| = p3/p2 = p,
every nontrivial element of A/A1 has order p.

The element b = (1, 2) does not belong to A1, since (1, 2) = k(1, 1) = (k, k) would imply
k ≡ 1 (mod p) and k ≡ 2 (mod p2), which is impossible. So b + A1 has order p in A/A1.
However, (1, 2) does not have order p in A since p(1, 2) = (p, 2p) = (0, 2p) ̸= (0, 0). Following
the proof of Lemma 1 we write pb = p(1, 2) = (0, 2p) = (2p, 2p) = 2p(1, 1) = 2pa1, so that
p(b− 2a1) = 0. So a = b− 2a1 has order p in A and a ≡ b (mod A1).

Theorem 1. Let p be a prime and let A be a finite abelian p-group. Then there is a sequence
of positive integers r1 ≥ r2 ≥ · · · ≥ rk so that A is the internal direct sum

A = C(pr1)⊕ C(pr2)⊕ · · · ⊕ C(prk),

where each C(pri) is a cyclic subgroup of A of order pri.

Proof. We induct on |A|. When |A| = 1, A has no nontrivial cyclic subgroups. We may
therefore take the sequence {ri} to be empty, since any direct sum indexed by the empty
set is understood to be the trivial group. So assume |A| > 1 and that we have proven the
theorem for all finite abelian p-groups of order strictly less than |A|. As in Lemma 2, choose
a1 ∈ A with |a1| = pr1 as large as possible, and set A1 = ⟨a1⟩. Since |A/A1| is a finite

2



abelian p-group whose order is less than |A|, the inductive hypothesis implies that A/A1 is
an internal direct sum

A/A1 = C(pr2)⊕ C(pr3)⊕ · · · ⊕ C(prkk ), (2)

where each C(pri) is a cyclic subgroup of A/A1 with order pri , and r2 ≥ r3 ≥ · · · ≥ r1 ≥ 1.
For each i write

C(pri) = ⟨bi + A1⟩.
Then bi +A1 has order p

ri and we can use Lemma 2 to find ai ∈ A so that ai +A1 = bi +A1

and |ai| = pri . In particular, C(pri) = ⟨ai +A1⟩ for all i. Also note that |a2| = pr2 ≤ pr1 , by
our choice of a1, so that r1 ≥ r2.

We claim that the sum
A1 ⊕ ⟨a2⟩ ⊕ ⟨a3⟩ ⊕ · · · ⊕ ⟨ak⟩ (3)

is direct. To see why, suppose that

n1a1 + n2a2 + · · ·+ nkak = 0

in A. Apply the canonical epimorphism π : A → A/A1 to obtain

0 = n1π(a1) + n2π(a2) + · · ·+ nkπ(ak)

= n2(a2 + A1) + · · ·+ nk(ak + A1).

Because each C(pri) = ⟨ai + A1⟩, and the sum of the C(pri) is direct, it must be the case
that ni(ai + A1) = A1 for all i. Since |ai + A1| = pri , it follows that pri divides ni for all i.
But we also have |ai| = pri , so this implies niai = 0 in A. Therefore, the equality

n1a1 + n2a2 + · · ·+ nkak = 0

implies that niai = 0 for all 2 ≤ i ≤ k, and therefore n1a1 = 0 as well. This proves the sum
(3) is direct.

The final step is to show that A is actually equal to the direct sum. This can be accom-
plished with a quick counting argument. First of all

|⟨ai⟩| = |ai| = pri = |C(pri)|

So by (2) and Lagrange’s theorem

|A|
|A1|

= |A/A1| =
k∏

i=2

|C(prii )| =
k∏

i=2

|⟨ai⟩|.

Therefore

|A| = |A1|
k∏

i=2

|⟨ai⟩| = |A1 ⊕ ⟨a2⟩ ⊕ ⟨a3⟩ ⊕ · · · ⊕ ⟨ak⟩|.

Since the sum on the right is a subgroup of A, this implies that the two groups coincide.

Given a finite abelian p-group A, the tuple (r1, r2, . . . , rk) of exponents occurring in the
direct sum decomposition of Theorem 1 will be called the type of A. Our final goal is to show
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that the type of a finite abelian p-group is unique. That is, if A also has type (s1, s2, . . . , sℓ),
then

(r1, r2, . . . , rk) = (s1, s2, . . . , sℓ).

Equivalently, k = ℓ and ri = si for all i.

Once again we induct on |A|. When |A| = 1 the only possible type is the empty tuple (),
which is therefore unique. Now suppose |A| > 1 and that we have proven the type of any
smaller abelian p-group is unique. Write

(r1, r2, . . . , rk) = (r1, r2, . . . , rk−µ, 1, 1, . . . , 1︸ ︷︷ ︸
µ ones

),

(s1, s2, . . . , sℓ) = (s1, s2, . . . , sℓ−ν , 1, 1, . . . , 1︸ ︷︷ ︸
ν ones

),

where rk−µ ≥ 2, sℓ−ν ≥ 2, and we allow µ = 0 or ν = 0, if necessary. Then pA is a finite
abelian p-group of types

(r1 − 1, r2 − 1, . . . , rk−µ − 1),

(s1 − 1, s2 − 1, . . . , sℓ−ν − 1),

since pC(pr) is a cyclic group of order pr−1 (why?). Because |pA| < |A| (why?), the inductive
hypothesis implies that

(r1 − 1, r2 − 1, . . . , rk−µ − 1) = (s1 − 1, s2 − 1, . . . , sℓ−ν − 1),

so that k − µ = ℓ − ν = m and ri − 1 = si − 1 for i ≤ m. We then have ri = si for i ≤ m
and the order of A is therefore

pr1+r2+···+rm+µ = ps1+s2+···+sm+ν .

Because ri = si for all i ≤ m, it follows that µ = ν, and hence k = ℓ, since k − µ = ℓ − ν.
And since ri = si = 1 for m < i ≤ k, and k = ℓ, we finally have

(r1, r2, . . . , rk) = (s1, s2, . . . , sℓ),

as needed. This proves that the type of A is unique, which completes the inductive step and
finishes our proof. To summarize:

Theorem 2. Let A be a finite abelian p-group. The exponents r1 ≥ r2 ≥ · · · ≥ rk of Theorem
1 are unique.

Because every cyclic group of order n is isomorphic to Z/nZ, as an immediate corollary
to Theorems 1 and 2 we obtain

Corollary 1. Let A be a finite abelian p-group. Then there is a unique sequence of positive
integers r1 ≥ r2 ≥ · · · ≥ rk so that

A ∼= (Z/pr1Z)⊕ (Z/pr2Z)⊕ · · · ⊕ (Z/prkZ) .

Notice that if A is an abelian p-group of order pe, and we decompose A as in Corollary
1, then

pe = |A| = |(Z/pr1Z)⊕ (Z/pr2Z)⊕ · · · ⊕ (Z/prkZ)| = pr1pr2 · · · prk = pr1+r2+···+rk .
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That is,
e = r1 + r2 + · · ·+ rk with r1 ≥ r2 ≥ · · · ≥ rk ≥ 1,

which is called a partition of e. It follows that:

Corollary 2. The isomorphism classes of abelian p-groups of order pe correspond to the
integer partitions of e.

Example 2. Let’s classify the finite abelian p-groups of order p5, up to isomorphism.
According to Corollary 2, the isomorphism classes correspond to partitions of e = 5. These
are

(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2), (4, 1), (5).

and the corresponding groups representing each class are

(Z/pZ)5, (Z/p2Z)⊕ (Z/pZ)3, (Z/p2Z)2 ⊕ (Z/pZ),

(Z/p3Z)⊕ (Z/pZ)2, (Z/p3Z)⊕ (Z/p2Z),

(Z/p4Z)⊕ (Z/pZ), Z/p5Z.

It is important to note that no two groups in this list can be isomorphic.
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