Finite Abelian Groups II: Finite Abelian *p*-Groups

R. C. Daileda

Our goal now is to decompose any finite abelian p-group (p a prime) as an internal direct sum of cyclic subgroups. First we need two lemmas.

Lemma 1. Let A be an additive abelian group and suppose $a \in A$ has order p^r where p is prime and $r \ge 0$. Then for any $k \in \mathbb{N}_0$:

$$|p^{k}a| = p^{r-\min\{k,r\}} = \begin{cases} p^{r-k} & \text{if } k \le r, \\ 1 & \text{otherwise.} \end{cases}$$

Proof. We have

$$|p^{k}a| = \frac{|a|}{\gcd(p^{k}, |a|)} = \frac{p^{r}}{\gcd(p^{k}, p^{r})} = \frac{p^{r}}{p^{\min\{k, r\}}} = p^{r-\min\{k, r\}}.$$

Now let A be a finite abelian p-group. Choose $a_1 \in A$ whose order p^{r_1} is as large as possible. Let $A_1 = \langle a_1 \rangle$. Then A/A_1 is a finite abelian p-group and we have the canonical epimorphism $\pi : A \to A/A_1$. Given $b \in A$, because π is a homomorphism, we know that $|\pi(b)|$ in A/A_1 must divide |b| in A. In order for our argument below to work, we need to know that, in fact, $|b| = |\pi(b)|$. But in general there's nothing to prevent |b| from being strictly larger than $|\pi(b)|$. Fortunately, $\pi(a) = \pi(b)$ for any $a \in b + A_1$, so it might be possible to "adjust" b by an element of A_1 to get $a \in A$ with $|a| = |\pi(a)|$ and $\pi(a) = \pi(b)$. The next lemma shows that this is indeed always possible.

Lemma 2. Let A be a finite abelian p-group, and suppose $a_1 \in A$ has maximum possible order p^{r_1} . Set $A_1 = \langle a_1 \rangle$ and let $\pi : A \to A/A_1$ denote the canonical epimorphism. For any $b \in A$, there exists $a \in A$ so that $\pi(a) = \pi(b)$ and $|a| = |\pi(b)|$.

Proof. Let $c \in \pi(b) = b + A_1$ so that $\pi(c) = \pi(b)$. Then

 $p^r = |\pi(b)| = |\pi(c)|$ divides $|c| = p^s$,

which implies that $r \leq s$. Furthermore, since $|\pi(c)| = p^r$ in A/A_1 , we have

$$A_1 = p^r \pi(c) = \pi(p^r c) \implies p^r c \in A_1 \implies p^r c = na_1$$

for some $n \in \mathbb{N}$. Write $n = p^k t$ with $k \ge 0$ and $p \nmid t$. Then

$$|ta_1| = \frac{|a_1|}{\gcd(t, |a_1|)} = \frac{p^{r_1}}{\gcd(t, p^{r_1})} = p^{r_1}.$$

This means we can compute the order of $p^r c = na_1 = p^k(ta_1)$ in two ways using Lemma 1. On the one hand

$$|p^{r}c| = p^{s-\min\{r,s\}} = p^{s-r}$$
 since $r \le s$.

On the other hand

$$|p^k(ta_1)| = p^{r_1 - \min\{k, r_1\}}.$$

Since both elements have the same order we conclude that

$$s - r = r_1 - \min\{k, r_1\}.$$
 (1)

If $k > r_1$, (1) becomes s - r = 0 or r = s. That is, $|c| = p^s = p^r$. Since $\pi(c) = \pi(b)$, we can take a = c to prove the lemma. If $k \le r_1$, (1) becomes $s - r = r_1 - k$ or $k - r = r_1 - s \ge 0$, since p^{r_1} is the largest possible order of elements in A, and $|c| = p^s$. Therefore $k \ge r$ and we have

$$p^{r}c = p^{k}(ta_{1}) = p^{r}(p^{k-r}ta_{1}) = p^{r}a'_{1},$$

where $a'_1 = p^{k-r} t a_1 \in A_1$, since $p^{k-r} \in \mathbb{N}$. We then have

$$p^r(c - a_1') = 0.$$

This shows that $|c - a'_1|$ divides p^r . But we also know that $|\pi(c - a'_1)| = |\pi(c)| = |\pi(b)| = p^r$, which shows that $|c - a'_1|$ is divisible by p^r . We conclude that $a = c - a'_1$ has order p^r and satisfies $\pi(a) = \pi(c) = \pi(b)$, as needed.

Example 1. Assume p is an odd prime and consider the finite abelian p-group $A = (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p^2\mathbb{Z})$. The element (1, 1) has order p^2 , which is as large as possible, since $A = A[p^2]$. So, in the notation of Lemma 2, we have $a_1 = (1, 1)$ and $A_1 = \langle (1, 1) \rangle$. Since $|A/A_1| = p^3/p^2 = p$, every nontrivial element of A/A_1 has order p.

The element b = (1, 2) does not belong to A_1 , since (1, 2) = k(1, 1) = (k, k) would imply $k \equiv 1 \pmod{p}$ and $k \equiv 2 \pmod{p^2}$, which is impossible. So $b + A_1$ has order p in A/A_1 . However, (1, 2) does not have order p in A since $p(1, 2) = (p, 2p) = (0, 2p) \neq (0, 0)$. Following the proof of Lemma 1 we write $pb = p(1, 2) = (0, 2p) = (2p, 2p) = 2p(1, 1) = 2pa_1$, so that $p(b - 2a_1) = 0$. So $a = b - 2a_1$ has order p in A and $a \equiv b \pmod{A_1}$.

Theorem 1. Let p be a prime and let A be a finite abelian p-group. Then there is a sequence of positive integers $r_1 \ge r_2 \ge \cdots \ge r_k$ so that A is the internal direct sum

$$A = C(p^{r_1}) \oplus C(p^{r_2}) \oplus \cdots \oplus C(p^{r_k}),$$

where each $C(p^{r_i})$ is a cyclic subgroup of A of order p^{r_i} .

Proof. We induct on |A|. When |A| = 1, A has no nontrivial cyclic subgroups. We may therefore take the sequence $\{r_i\}$ to be empty, since any direct sum indexed by the empty set is understood to be the trivial group. So assume |A| > 1 and that we have proven the theorem for all finite abelian p-groups of order strictly less than |A|. As in Lemma 2, choose $a_1 \in A$ with $|a_1| = p^{r_1}$ as large as possible, and set $A_1 = \langle a_1 \rangle$. Since $|A/A_1|$ is a finite abelian p-group whose order is less than |A|, the inductive hypothesis implies that A/A_1 is an internal direct sum

$$A/A_1 = C(p^{r_2}) \oplus C(p^{r_3}) \oplus \dots \oplus C(p_k^{r_k}),$$
(2)

where each $C(p^{r_i})$ is a cyclic subgroup of A/A_1 with order p^{r_i} , and $r_2 \ge r_3 \ge \cdots \ge r_1 \ge 1$. For each *i* write

$$C(p^{r_i}) = \langle b_i + A_1 \rangle.$$

Then $b_i + A_1$ has order p^{r_i} and we can use Lemma 2 to find $a_i \in A$ so that $a_i + A_1 = b_i + A_1$ and $|a_i| = p^{r_i}$. In particular, $C(p^{r_i}) = \langle a_i + A_1 \rangle$ for all *i*. Also note that $|a_2| = p^{r_2} \leq p^{r_1}$, by our choice of a_1 , so that $r_1 \geq r_2$.

We claim that the sum

$$A_1 \oplus \langle a_2 \rangle \oplus \langle a_3 \rangle \oplus \dots \oplus \langle a_k \rangle \tag{3}$$

is direct. To see why, suppose that

$$n_1a_1 + n_2a_2 + \dots + n_ka_k = 0$$

in A. Apply the canonical epimorphism $\pi: A \to A/A_1$ to obtain

$$0 = n_1 \pi(a_1) + n_2 \pi(a_2) + \dots + n_k \pi(a_k)$$

= $n_2(a_2 + A_1) + \dots + n_k(a_k + A_1).$

Because each $C(p^{r_i}) = \langle a_i + A_1 \rangle$, and the sum of the $C(p^{r_i})$ is direct, it must be the case that $n_i(a_i + A_1) = A_1$ for all *i*. Since $|a_i + A_1| = p^{r_i}$, it follows that p^{r_i} divides n_i for all *i*. But we also have $|a_i| = p^{r_i}$, so this implies $n_i a_i = 0$ in A. Therefore, the equality

$$n_1 a_1 + n_2 a_2 + \dots + n_k a_k = 0$$

implies that $n_i a_i = 0$ for all $2 \le i \le k$, and therefore $n_1 a_1 = 0$ as well. This proves the sum (3) is direct.

The final step is to show that A is actually equal to the direct sum. This can be accomplished with a quick counting argument. First of all

$$|\langle a_i \rangle| = |a_i| = p^{r_i} = |C(p^{r_i})|$$

So by (2) and Lagrange's theorem

$$\frac{|A|}{|A_1|} = |A/A_1| = \prod_{i=2}^k |C(p_i^{r_i})| = \prod_{i=2}^k |\langle a_i \rangle|.$$

Therefore

$$|A| = |A_1| \prod_{i=2}^k |\langle a_i \rangle| = |A_1 \oplus \langle a_2 \rangle \oplus \langle a_3 \rangle \oplus \cdots \oplus \langle a_k \rangle|.$$

Since the sum on the right is a subgroup of A, this implies that the two groups coincide. \Box

Given a finite abelian *p*-group A, the tuple (r_1, r_2, \ldots, r_k) of exponents occurring in the direct sum decomposition of Theorem 1 will be called the *type* of A. Our final goal is to show

that the type of a finite abelian *p*-group is unique. That is, if A also has type $(s_1, s_2, \ldots, s_\ell)$, then

$$(r_1, r_2, \ldots, r_k) = (s_1, s_2, \ldots, s_\ell).$$

Equivalently, $k = \ell$ and $r_i = s_i$ for all *i*.

Once again we induct on |A|. When |A| = 1 the only possible type is the empty tuple (), which is therefore unique. Now suppose |A| > 1 and that we have proven the type of any smaller abelian *p*-group is unique. Write

$$(r_1, r_2, \dots, r_k) = (r_1, r_2, \dots, r_{k-\mu}, \underbrace{1, 1, \dots, 1}_{\mu \text{ ones}}),$$
$$(s_1, s_2, \dots, s_\ell) = (s_1, s_2, \dots, s_{\ell-\nu}, \underbrace{1, 1, \dots, 1}_{\nu \text{ ones}}),$$

where $r_{k-\mu} \ge 2$, $s_{\ell-\nu} \ge 2$, and we allow $\mu = 0$ or $\nu = 0$, if necessary. Then pA is a finite abelian *p*-group of types

$$(r_1 - 1, r_2 - 1, \dots, r_{k-\mu} - 1),$$

 $(s_1 - 1, s_2 - 1, \dots, s_{\ell-\nu} - 1),$

since $pC(p^r)$ is a cyclic group of order p^{r-1} (why?). Because |pA| < |A| (why?), the inductive hypothesis implies that

$$(r_1 - 1, r_2 - 1, \dots, r_{k-\mu} - 1) = (s_1 - 1, s_2 - 1, \dots, s_{\ell-\nu} - 1),$$

so that $k - \mu = \ell - \nu = m$ and $r_i - 1 = s_i - 1$ for $i \leq m$. We then have $r_i = s_i$ for $i \leq m$ and the order of A is therefore

$$p^{r_1+r_2+\dots+r_m+\mu} = p^{s_1+s_2+\dots+s_m+\nu}.$$

Because $r_i = s_i$ for all $i \leq m$, it follows that $\mu = \nu$, and hence $k = \ell$, since $k - \mu = \ell - \nu$. And since $r_i = s_i = 1$ for $m < i \leq k$, and $k = \ell$, we finally have

$$(r_1, r_2, \ldots, r_k) = (s_1, s_2, \ldots, s_\ell),$$

as needed. This proves that the type of A is unique, which completes the inductive step and finishes our proof. To summarize:

Theorem 2. Let A be a finite abelian p-group. The exponents $r_1 \ge r_2 \ge \cdots \ge r_k$ of Theorem 1 are unique.

Because every cyclic group of order n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$, as an immediate corollary to Theorems 1 and 2 we obtain

Corollary 1. Let A be a finite abelian p-group. Then there is a unique sequence of positive integers $r_1 \ge r_2 \ge \cdots \ge r_k$ so that

$$A \cong (\mathbb{Z}/p^{r_1}\mathbb{Z}) \oplus (\mathbb{Z}/p^{r_2}\mathbb{Z}) \oplus \cdots \oplus (\mathbb{Z}/p^{r_k}\mathbb{Z}).$$

Notice that if A is an abelian p-group of order p^e , and we decompose A as in Corollary 1, then

$$p^e = |A| = |(\mathbb{Z}/p^{r_1}\mathbb{Z}) \oplus (\mathbb{Z}/p^{r_2}\mathbb{Z}) \oplus \cdots \oplus (\mathbb{Z}/p^{r_k}\mathbb{Z})| = p^{r_1}p^{r_2}\cdots p^{r_k} = p^{r_1+r_2+\cdots+r_k}.$$

That is,

$$e = r_1 + r_2 + \dots + r_k$$
 with $r_1 \ge r_2 \ge \dots \ge r_k \ge 1$,

which is called a *partition* of e. It follows that:

Corollary 2. The isomorphism classes of abelian p-groups of order p^e correspond to the integer partitions of e.

Example 2. Let's classify the finite abelian *p*-groups of order p^5 , up to isomorphism. According to Corollary 2, the isomorphism classes correspond to partitions of e = 5. These are

(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2), (4, 1), (5).

and the corresponding groups representing each class are

$$(\mathbb{Z}/p\mathbb{Z})^5, \ (\mathbb{Z}/p^2\mathbb{Z}) \oplus (\mathbb{Z}/p\mathbb{Z})^3, \ (\mathbb{Z}/p^2\mathbb{Z})^2 \oplus (\mathbb{Z}/p\mathbb{Z}),$$
$$(\mathbb{Z}/p^3\mathbb{Z}) \oplus (\mathbb{Z}/p\mathbb{Z})^2, \ (\mathbb{Z}/p^3\mathbb{Z}) \oplus (\mathbb{Z}/p^2\mathbb{Z}),$$
$$(\mathbb{Z}/p^4\mathbb{Z}) \oplus (\mathbb{Z}/p\mathbb{Z}), \ \mathbb{Z}/p^5\mathbb{Z}.$$

It is important to note that no two groups in this list can be isomorphic.