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Let A be a finite abelian group of order

n = pe11 · · · peℓℓ ,
where the pi are distinct primes and ei ≥ 1 for all i. According to Theorem 2 of Part I, we
have

A =
ℓ⊕

i=1

A[peii ], (1)

where each A[peii ] is a pi-group of order peii . According to Theorem 1 of Part II, for each i
we have

A[peii ] =

ki⊕
j=1

C(p
ri,j
i ), (2)

where C(m) denotes a cyclic subgroup of order m, and ri,1 ≥ ri,2 ≥ · · · ≥ ri,ki ≥ 1.

Because the number of summands ki in (2) can vary with i, we set

k = max
i

ki,

and for any j satisfying ki < j ≤ k we define ri,j = 0. Then C(p
ri,j
i ) = C(p0i ) = {0} for any

such i and j. Instead of (2) we can then write

A[peii ] =
k⊕

j=1

C(p
ri,j
i ),

since any summand beyond the kth
i is simply the trivial group. Substituting these modified

decompositions into (1) we obtain

A =
ℓ⊕

i=1

k⊕
j=1

C(p
ri,j
i )

=
k⊕

j=1

(
ℓ⊕

i=1

C(p
ri,j
i )

)
. (3)

Because the orders of the cyclic subgroups C(p
ri,j
i ) for i = 1, 2, . . . ℓ are pairwise relatively

prime, their direct sum is again cyclic, of order

dj =
ℓ∏

i=1

p
ri,j
i . (4)
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So we have

A =
k⊕

j=1

C(dj),

where

C(dj) =
ℓ⊕

i=1

C(p
ri,j
i )

for each j.

Now for any fixed i and all j ≤ ki we have ri,j−1 ≥ ri,j. This continues to hold even if
j > ki since we defined ri,j = 0 in this case. Hence p

ri,j
i |pri,j−1

i for all j. It follows from (4)
that dj|dj−1 for all j. We have now arrived at our Fundamental Theorem.

Theorem 1 (Fundamental Theorem of Finite Abelian Groups). Let A be a finite abelian
group. There exist unique integers dj ≥ 2 satisfying dk|dk−1| · · · |d1 so that A is the internal
direct sum

A =
k⊕

j=1

C(dj)

of cyclic subgroups C(dj) of size dj. The integers dj are called the elementary divisors of A.

At this point we’ve proven every statement in the Fundamental Theorem aside from
the uniqueness of the sequence of elementary divisors. We leave this to the interested and
industrious reader.

Corollary 1. Let A be a finite abelian group. There exist unique integers dj ≥ 2 satisfying
dk|dk−1| · · · |d1 so that

A ∼=
k∏

j=1

Z/djZ.

Proof. The internal direct sum of the subgroups C(dj) in the Fundamental Theorem is iso-
morphic to their external product (by definition), and C(dj) ∼= Z/djZ for all j.

When we were dealing with classifying finite abelian p-groups of a given order pe, we
found that the exponents in the cyclic factors corresponded to the partitions of e. So by
determining all of the partitions of e we could create a list of the isomorphism classes of
finite abelian p-groups of order pe.

The analogous problem, of classifying all the (general) finite abelian groups with a given
order n, requires us to determine all sequences of elementary divisors dj ≥ 2 so that
dk|dk−1| · · · |d1 and n = d1d2 · · · dk. This can be done using partitions as in the case of
p-groups, but the technique is somewhat more involved. The key idea is to realize that
elementary divisors arose from the sizes of the cyclic summands in the decompositions of the
prime power torsion subgroups, when we reversed the order of the double direct sum in (3).

To see how this works, write out the prime factorization of n as usual:

n = pe11 · · · peℓk .
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For each i, find the set Pi of all partitions (ri,1, ri,2, . . . , ri,ki) of the exponent ei. The possible
sequences of elementary divisors correspond to the tuples (πi) ∈ P1 × P2 × · · · × Pℓ. Given
such a tuple (πi), let k denote the maximum length of any of the πi. Add zeros as necessary
to the end of each πi so that all of the resulting modified partitions have common length k.
We then have πi = (ri,1, ri,2, . . . , ri,k) for all i. Finally, set

dj =
ℓ∏

i=1

p
ri,j
i

for j = 1, 2, . . . , k. The resulting sequence d1, d2, . . . , dk yields the elementary divisors corre-
sponding to the tuple (πi) of partitions of the exponents ei. By running through every tuple
in P1 ×P2 × · · · ×Pℓ one obtains all of the possible elementary divisors for the isomorphism
classes of finite abelian groups of order n.

Example 1. Let’s classify the finite abelian groups of order n = 756 = 22 33 7. The
exponents of the prime factors are e1 = 2, e2 = 3 and e3 = 1. The partitions of 2 are
P1 = {(1, 1), (2)}, the partitions of 3 are P2 = {(1, 1, 1), (2, 1), (3)}, and the partitions of 1
are P3 = {(1)}. Rather than lengthen these on a case by case basis, we simply note that the
largest length is 3, and add zeros to the shorter partitions to give them length 3, also. This
yields the modified partitions

P1 = {(1, 1, 0), (2, 0, 0)},

P2 = {(1, 1, 1), (2, 1, 0), (3, 0, 0)},

P3 = {(1, 0, 0)}.

We now choose one partition from each of P1, P2 and P3 in every possible way to construct
the elementary divisors. This yields:

(1, 1, 0), (1, 1, 1), (1, 0, 0) ⇝ d1 = 21 31 71 = 42, d2 = 21 31 70 = 6, d3 = 20 31 70 = 3,

(2, 0, 0), (1, 1, 1), (1, 0, 0) ⇝ d1 = 22 31 71 = 84, d2 = 20 31 70 = 3, d3 = 20 31 70 = 3,

(1, 1, 0), (2, 1, 0), (1, 0, 0) ⇝ d1 = 21 32 71 = 126, d2 = 21 31 70 = 6, d3 = 20 30 70 = 1,

(2, 0, 0), (2, 1, 0), (1, 0, 0) ⇝ d1 = 22 32 71 = 252, d2 = 20 31 70 = 3, d3 = 20 30 70 = 1,

(1, 1, 0), (3, 0, 0), (1, 0, 0) ⇝ d1 = 21 33 71 = 378, d2 = 21 30 70 = 2, d3 = 20 30 70 = 1,

(2, 0, 0), (3, 0, 0), (1, 0, 0) ⇝ d1 = 22 33 71 = 756, d2 = 20 30 70 = 1, d3 = 20 30 70 = 1,

Since elementary divisors of an abelian group must be at least 2, we discard any dj = 1
(if we included them, they would contribute the trivial group Z/1Z = {0} to the direct
sum decomposition, which wouldn’t change the overall group anyway). So our final list of
elementary divisors for an abelian group of order 756 is:

3|6|42, 3|3|84, 6|126, 3|252, 2|378, 756.

And the corresponding list of representative abelian groups is finally

(Z/3Z)⊕(Z/6Z)⊕ (Z/42Z), (Z/3Z)2 ⊕ (Z/84Z), (Z/6Z)⊕ (Z/126Z),

(Z/3Z)⊕ (Z/252Z), (Z/2Z)⊕ (Z/378Z), Z/756Z.
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Before proceeding to the next example, we make a quick observation. If dk|dk−1| · · · |d1
are the elementary divisors of an abelian group A, so that

A ∼= (Z/dkZ)⊕ (Z/dk−1Z)⊕ · · · ⊕ (Z/d1Z),

then d1 (the largest elementary divisor) is an (in fact the smallest) exponent for A. That is,
d1a = 0 for all a ∈ A. To see why, let (mk,mk−1, . . . ,m1) belong to the direct sum. Then

d1(mk,mk−1, . . . ,m1) = (d1mk, d1mk−1, . . . , d1m1).

But every element of Z/djZ has order dividing dj (the size of the group), and dj|d1 for all j.
So

(d1mk, d1mk−1, . . . , d1m1) = (0, 0, . . . , 0),

as claimed. A nice application of this fact is the following.

Example 2. Let G be a finite subgroup of C×. Use the Fundamental Theorem to write

G ∼= (Z/dkZ)⊕ (Z/dk−1Z)⊕ · · · ⊕ (Z/d1Z),

with dk|dk−1| · · · |d1 (keep in mind that the group G is written multiplicatively). According
to the discussion above, zd1 = 1 for all z ∈ G. This shows that every member of G is a root
of the polynomial Xd1 −1. This means that Xd1 −1 has at least |G| = d1d2 · · · dk roots in C.
But it is well known that the number of complex roots of a polynomial f(X) with complex
coefficients cannot exceed its degree deg f , which is simply the largest power of X occurring
in f(X). In particular, Xd1 − 1 has at most d1 complex roots. Since the members of G have
yielded d1d2 · · · dk roots, we must therefore have

d1d2 · · · dk ≤ d1.

If k > 1 this is impossible, since each dj ≥ 2. So we must have k = 1. That is, d1 is the only
elementary divisor of G, so that

G ∼= Z/d1Z,
which shows that G must be cyclic. So we have proven:

Theorem 2. Every finite subgroup of the multiplicative group C× must be cyclic.

Going a little bit further, suppose G is a finite subgroup of C× of order n. Then G is
cyclic, say G = ⟨ζ⟩. And every z ∈ G satisfies zn = 1, or zn − 1 = 0, since n = |G|. So the
members of G are precisely the roots of the polynomial Xn − 1. That is

G = ⟨ζ⟩ = µn = {z ∈ C |zn − 1 = 0},

the group of nth roots of unity, which we encountered previously in the homework. The
generator ζ (which is not unique) is called a primitive nth root of unity. This provides a
classification of every finite subgroup of C×.

Theorem 3. For each n ∈ N, the group µn of nth roots of unity is cyclic, and it is the
unique subgroup of C× of order n.
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