

Modern Algebra Spring 2025

Assignment 1.2 Due January 22

Exercise 1. Given $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, let $R_n(a)$ denote the remainder when a is divided by n using the Division Algorithm.

- **a.** Prove that for any $a, b \in \mathbb{Z}$, $R_n(a) = R_n(b)$ if and only if a b is divisible by n in \mathbb{Z} , i.e. there is a $c \in \mathbb{Z}$ so that a b = cn.
- **b.** Prove that for any $a, b \in \mathbb{Z}$ one has $R_n(a+b) = R_n(R_n(a)+b)$ and $R_n(ab) = R_n(R_n(a)b)$.
- **c.** Recall that for $a, b \in \mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ we defined $a \oplus b = R_n(a+b)$ and $a \otimes b = R_n(ab)$. Show that \oplus and \otimes are both associative binary operations on \mathbb{Z}_n . [Suggestion. Given $a, b, c \in \mathbb{Z}_n$, consider $R_n(a+b+c)$ and $R_n(abc)$, and use part **b**.]

Exercise 2. Let

$$G = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\},$$

where $i^2 = -1$.

- **a.** Show that G is closed under matrix multiplication (that is, $AB \in G$ for all $A, B \in G$).
- **b.** Prove that G is a group under matrix multiplication. Is it abelian?

Exercise 3. Let G be a group and $e_0 \in G$. Given $x, y \in G$, define a new binary operation * on G by

$$x * y = x e_0^{-1} y.$$

Prove that G is a group under *.