

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2025 \end{array}$

Assignment 11.2 Due April 16

Exercise 1. Let p be a prime number. If G is a group, $N \triangleleft G$, and N and G/N are both p-groups, prove that G is a p-group.

Exercise 2. Let p be a prime number and let A be an abelian p-group. Show that every subgroup and every quotient of A is also an abelian p-group. [Suggestion. If A' < A, apply Exercise 5.1.5 to the natural epimorphism $\pi : A \to A/A'$.]

Exercise 3. Let p be a prime number and define

$$\mathbb{Z}[p^{-1}] = \left\{ \frac{n}{p^m} \, \middle| \, n \in \mathbb{Z}, m \in \mathbb{N}_0 \right\}.$$

- **a.** Show that $\mathbb{Z}[p^{-1}]$ is a subgroup of $(\mathbb{Q}, +)$ containing \mathbb{Z} .
- **b.** Show that the *Prüfer group*

$$\mathbb{Z}(p^{\infty}) := \mathbb{Z}[p^{-1}]/\mathbb{Z}$$

is an infinite *p*-group.

c. Show that every subgroup of $\mathbb{Z}(p^{\infty})$ has the form $\left(\frac{1}{p^m}\mathbb{Z}\right)/\mathbb{Z}$ for some $m \in \mathbb{N}_0$, which is cyclic of order p^m .[†]

[†]This means that $\mathbb{Z}(p^{\infty})$ contains (a unique copy of) $\mathbb{Z}/p^m\mathbb{Z}$ for all $m \in \mathbb{N}_0$.