

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2025 \end{array}$

Assignment 13.1 Due April 30

Exercise 1. Let A be a finite abelian group.

- **a.** If p is prime and A is a p-group of order p^e , use Theorem 1 of Handout 2 to show that for each $0 \le f \le e$, A has a subgroup of order p^f .
- **b.** If A has order n and d is a positive integer dividing n, use part **a** and Theorem 2 of Handout 1 to show that A has a both a subgroup and a quotient of order d. [Remark. The existence of the quotient follows from the existence of the subgroup. Why?]
- c. How does the result of part b differ from the corresponding result for finite cyclic groups?

Exercise 2. Classify (up to isomorphism) the abelian groups of order n = 2906631. [*Remark.* There are 18 isomorphism classes.]