

Modern Algebra Spring 2025

Assignment 3.3 Due February 12

Exercise 1. For $z = a + bi \in \mathbb{C}$, where $a, b \in \mathbb{R}$ and $i^2 = -1$, recall that we defined $|z| = \sqrt{a^2 + b^2}$. Let $\overline{z} = a - bi$ denote the *complex conjugate* of z.

- **a.** Show that for all $z, w \in \mathbb{C}$ one has $\overline{z+w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \overline{w}$.
- **b.** Show that for all $z \in \mathbb{C}$ one has $|z|^2 = z\overline{z}$.
- **c.** Use parts **a** and **b** to show that |zw| = |z| |w| for all $z, w \in \mathbb{C}$.

Exercise 2. For $n \in \mathbb{N}$, let $\mu_n = \{z \in \mathbb{C}^{\times} | z^n = 1\}$. The elements of μ_n are called the *n*th roots of unity.

- **a.** Prove that $\boldsymbol{\mu}_n < S^1$.
- **b.** Euler's Formula states that

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

for any $\theta \in \mathbb{R}$. Show that $z \in S^1$ if and only if $z = e^{i\theta}$ for some $\theta \in \mathbb{R}$.

c. The addition formulae for sine and cosine imply that

 $e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$

for any $\theta, \phi \in \mathbb{R}$. Use this fact and part **b** to show that

$$z \in \boldsymbol{\mu}_n \iff z = e^{rac{2k\pi i}{n}}$$

for some $k \in \mathbb{Z}$. Conclude that $|\boldsymbol{\mu}_n| = n$.

Exercise 3. Prove that $Z(GL_2(\mathbb{R})) = \{aI \mid a \in \mathbb{R}^{\times}\}$. [Suggestion: First show that $\{aI \mid a \in \mathbb{R}^{\times}\}$ is a subgroup of the center. To prove the opposite inclusion, choose any $A \in Z(GL_2(\mathbb{R}))$ and commute it with the matrices $\binom{1}{1}$ and $\binom{1}{1}$.]

Exercise 4. Let

$$O_2(\mathbb{R}) = \left\{ A \in \operatorname{GL}_2(\mathbb{R}) \, | \, AA^t = I \right\},\,$$

where A^t denotes the transpose of A (reflection of its entries across the diagonal). Show that $O_2(\mathbb{R}) < GL_2(\mathbb{R})$.

Exercise 5. Let S be a nonempty set, let $a \in S$ and define

$$\mathcal{F}_a = \{ \sigma \in \operatorname{Perm}(S) \, | \, \sigma(a) = a \},\$$

the permutations of S that have a as a fixed point. Prove that $\mathcal{F}_a < \operatorname{Perm}(S)$.