

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2025 \end{array}$

Assignment 5.1 Due February 26

Exercise 1. Let (A, +) be an abelian group and let $n \in \mathbb{Z}$. Define $f : A \to A$ by f(a) = na. Prove that f is an endomorphism. Where does your argument require the hypothesis that A is abelian?

Exercise 2. With A and n as above, prove that if A is finite and gcd(|A|, n) = 1, then f is an isomorphism. In other words, for any $a \in A$ the equation nx = a has a unique solution $x \in A$.

Exercise 3. Lang, Exercise II.3.3.

Exercise 4. Let $f : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ be given by f(z) = z/|z|.

- **a.** Show that f is a homomorphism.
- **b.** Explicitly describe im f and ker f.

Exercise 5. Let $f: G \to H$ be a homomorphism of groups and let $x \in G$.

- **a.** Show that the order of f(x) divides the order of x.
- **b.** If f is a monomorphism, prove that the order of f(x) equals the order of x.