

Modern Algebra Spring 2025

Assignment 5.2 Due February 26

Exercise 1. Let $m, n \in \mathbb{Z}$. Prove that $n\mathbb{Z} \subseteq m\mathbb{Z}$ if and only if m|n. So containment between subgroups of \mathbb{Z} corresponds to divisibility in \mathbb{Z} .

Exercise 2. Let S and T be sets with |S| = |T|.

- **a.** Prove that $\operatorname{Perm}(S) \cong \operatorname{Perm}(T)$. So, up to isomorphism, $\operatorname{Perm}(S)$ only depends on |S|. [Suggestion. Let $f: S \to T$ be any bijection, and show that the map $\operatorname{Perm}(S) \to \operatorname{Perm}(T)$ by $\sigma \mapsto f \circ \sigma \circ f^{-1}$ is an isomorphism.]
- **b.** Conclude that if $|S| = n \in \mathbb{N}$, then $\operatorname{Perm}(S) \cong S_n$.