

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2025 \end{array}$

Assignment 6.1 Due March 5

Exercise 1. Let G be a group and $S \subseteq G$. Given $x, y \in G$, define $x \sim y$ by the condition $xy^{-1} \in S$. Prove that if \sim is an equivalence relation on G, then S < G.

Exercise 2. Prove that the index is "multiplicative in towers." That is, if K < H < G are groups, and [G:H] and [H:K] are both finite, then [G:K] is finite and

$$[G:K] = [G:H] [H:K].$$

You may not assume G is finite.

Exercise 3. We know that $\mathbb{R}^+ < \mathbb{C}^{\times}$ and $S^1 < \mathbb{C}^{\times}$. Use *polar coordinates* in \mathbb{C}^{\times} (see the following page) below.

- **a.** Geometrically describe the elements of $\mathbb{C}^{\times}/\mathbb{R}^+$ (as subsets of $\mathbb{C} = \mathbb{R}^2$). [*Remark.* \mathbb{C}^{\times} is abelian, so left and right cosets of \mathbb{R}^+ are the same.]
- **b.** Geometrically describe the elements of \mathbb{C}^{\times}/S^1 .

Exercise 4. Let G be a group and let H and K be subgroups of finite index in G. Prove that $H \cap K$ also has finite index in G.

Polar coordinates in \mathbb{C}^{\times}

Given any $z \in \mathbb{C}^{\times}$, the multiplicativity of the absolute value implies $z/|z| \in S^1$. Thus, by Exercise 3.3.2, $z/|z| = e^{i\theta}$ for some $\theta \in \mathbb{R}$ and so

$$z = |z| \left(\frac{z}{|z|}\right) = |z|e^{i\theta} = re^{i\theta},$$

where r = |z| > 0. This is called the *polar form* of z, and (r, θ) are the *polar coordinates* of z (under the identification $x + iy \mapsto (x, y)$ of \mathbb{C} with \mathbb{R}^2 , these are the usual polar coordinates; check this). The absolute value r = |z| is frequently called the *modulus* of z, and θ is called "the" *argument* of z. Clearly r is unique to z, but θ can be replaced by any member of the coset $\theta + 2\pi\mathbb{Z}$ (of the subgroup $2\pi\mathbb{Z}$ in \mathbb{R}). So θ should really be thought of as a member of $\mathbb{R}/2\pi\mathbb{Z}$ (we'll have a precise interpretation of this soon).

The polar expression of $z \in \mathbb{C}^{\times}$ is much more useful than its Cartesian expression, because it interacts very nicely with multiplication, and actually provides a geometric interpretation for multiplication of complex numbers (addition is just addition in \mathbb{R}^2 , which is no more than vector addition, or translation). If $z = re^{i\theta}$ and $w = \rho e^{i\phi}$ with $r, \rho > 0$, then

$$zw = (r\rho)e^{i(\theta+\phi)}$$

which shows that to multiply nonzero complex numbers, multiply their moduli and add their arguments. Put another way, multiplication of \mathbb{C}^{\times} by $z = re^{i\theta}$ is dilation by r = |z| followed by a counterclockwise rotation (about the origin) of θ radians.