

Modern Algebra Spring 2025 Assignment 6.2 Due March 5

Exercise 1. Describe the elements of R^{\times}/\mathbb{R}^+ . Use this to compute $[\mathbb{R}^{\times}:\mathbb{R}^+]$.

Exercise 2. If G is a multiplicative abelian group and $n \in \mathbb{N}$, we know that $g \mapsto g^n$ is an endomorphism of G, whose image is clearly

$$P_n(G) = \{g^n \mid g \in G\},\$$

the *n*th powers in G. This implies immediately that $P_n(G) < G$.

- **a.** Show that $[\mathbb{C}^{\times} : P_n(\mathbb{C}^{\times})] = 1.$
- **a.** Show that $[\mathbb{R}^{\times} : P_n(\mathbb{R}^{\times})] = \frac{3+(-1)^n}{2}$.
- **b.** Show that $[\mathbb{Q}^{\times} : P_n(\mathbb{Q}^{\times})]$ is infinite for $n \geq 2$ (it actually equals $|\mathbb{Z}|$).

Exercise 3. Show that $[\mathbb{R} : \mathbb{Q}]$ is infinite (it actually equals $|\mathbb{R}|$) [Suggestion. Argue by contradiction.]

Exercise 4. Let G be a group of order pqr, where p, q and r are distinct primes. If H, K < G satisfy |H| = qp and |K| = qr, prove that $|H \cap K| = q$. [Suggestion. Observe that K has more elements than H has (left) cosets, then use the pigeonhole principle.]