

Modern Algebra Spring 2025 Assignment 6.3 Due March 5

Exercise 1. Let G be a group. Prove that $Z(G) \triangleleft G$.

Exercise 2. Let $f: G \to H$ be a group homomorphism.

- **a.** Show that $[a,b] \in f^{-1}([H,H])$ for all $a,b \in G$. Conclude that $[G,G] \subseteq f^{-1}([H,H])$, and hence $f([G,G]) \subseteq [H,H]$.
- **b.** Use part **a** to show that if $f: G \to H$ is an isomorphism, then f([G,G]) = [H,H].
- **c.** According to exercise 4.3.2, for any $g \in G$ the conjugation map $c_g : G \to G$ given by $c_g(x) = gxg^{-1}$ is an automorphism of G. Use this and part **b** to show that $[G, G] \triangleleft G$.

Exercise 3. Let G be a group and suppose $H \triangleleft G$, so that the binary operation (xH)(yH) = (xy)H on G/H is well-defined. Prove that this operation is commutative if and only if $[G,G] \subseteq H$.

Exercise 4. Let $n \in \mathbb{N}$, $n \ge 2$. Let

$$\Gamma(n) = \{ A \in \operatorname{SL}_2(\mathbb{Z}) \, | \, A \equiv I \pmod{n} \}$$

and

 $\Gamma_0(n) = \{ A \in \mathrm{SL}_2(\mathbb{Z}) \mid A \pmod{n} \text{ is upper triangular} \}.$

We have seen that $\Gamma_0(n) < \operatorname{SL}_2(\mathbb{Z})$. Prove that $\Gamma(n) \triangleleft \operatorname{SL}_2(\mathbb{Z})$ but $\Gamma_0(n) \not \triangleleft \operatorname{SL}_2(\mathbb{Z})$.