

Assignment 7.1 Due March 19

Exercise 1. Let G, H be groups, $f : G \to H$ a homomorphism.

- **a.** If $K \triangleleft H$, prove that $f^{-1}(K) \triangleleft G$.
- **b.** If $K \triangleleft G$ and f is surjective, prove that $f(K) \triangleleft H$.

Exercise 2. Let G be a group, H < G and $N \lhd G$.

- **a.** Prove that HN < G.
- **b.** Prove that $H \cap N \triangleleft H$.
- **c.** Prove that if $H \triangleleft G$ and $H \cap N$ is trivial, then hn = nh for all $h \in H$ and $n \in N$.

Exercise 3. Lang, II.4.28

Exercise 4. Prove that \mathbb{Q} has no proper subgroups of finite index.

Exercise 5. Let G be a group and H < G. The normalizer of H in G is

$$N_G(H) = \{ x \in G \, | \, xHx^{-1} = H \}.$$

- **a.** Prove that $N_G(H)$ is a subgroup of G containing H, and that H is normal in $N_G(H)$.
- **b.** Prove that the set $\{xHx^{-1} | x \in G\}$ of conjugates of H is in one to one correspondence with the left cosets of $N_G(H)$ in G.