

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2025 \end{array}$

Exercise 1. Let $d, n \in \mathbb{N}$ with d|n (so that $n\mathbb{Z} \subseteq d\mathbb{Z}$). Use the First Isomorphism Theorem to prove that

$$d\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/(\frac{n}{d})\mathbb{Z}.$$

Exercise 2. Use the map $z \mapsto \frac{z}{|z|}$ and the First Isomorphism Theorem to show that

$$\mathbb{C}^{\times}/\mathbb{R}^+ \cong S^1.$$

In an analogous manner, show that

$$\mathbb{C}^{\times}/S^1 \cong \mathbb{R}^+$$

Exercise 3. Let G be a group.

- **a.** Let $K \triangleleft G$. Prove that G/K is abelian if and only if [G,G] < K. [Suggestion. To show [G,G] < K it suffices to prove that $[a,b] \in K$ for all $a,b \in G$. Why?]
- **b.** Let $f : G \to H$ be a group homomorphism. Use part **a** and the First Isomorphism Theorem to prove that if H is abelian, then $[G, G] < \ker f$. This shows that G/[G, G] is the largest abelian quotient (homomorphic image) of G.

Exercise 4. Let G be a group, H < G and $N \triangleleft G$.

- **a.** Prove that NH = HN < G.
- **b.** Use the First Isomorphism Theorem to prove that $HN/N \cong H/(H \cap N)$.

Exercise 5. Lang, II.4.29(ab) (part (c) follows from the next exercise).

Exercise 6. Lang, II.4.30

Assignment 7.2 Due March 19