

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \\ {\rm Spring} \ 2025 \end{array}$

Assignment 9.1 Due April 1

Exercise 1. Draw the directed graphs of each permutation in Exercise 8.3.1. Indicate the disjoint cycles in each.

Exercise 2. It is not hard to show that

 $S_3 = \{(1), (12), (13), (23), (123), (132)\} = \langle (12), (123) \rangle.$

a. Draw the directed graphs of the left translations of S_3 by (12) and (123).

b. Use part **a** to draw the Cayley graph of S_3 relative to the generators (12) and (123).

Exercise 3. Let $(i_1 i_2 \cdots i_r)$ be an *r*-cycle in S_n and let $\sigma \in S_n$ be arbitrary. Prove that

$$\sigma(i_1 \, i_2 \, \cdots \, i_r) \sigma^{-1} = (\sigma(i_1) \, \sigma(i_2) \, \cdots \, \sigma(i_r)),$$

directly or with directed graphs.

Exercise 4. Use the preceding exercise to show that any two *r*-cycles in S_n are conjugate. [*Warning.* This is not as trivial as it may appear: there's a subtlety that's easy to overlook. Be careful!]