

Modern Algebra Spring 2025 Assignment 9.2 Due April 1

Exercise 1. Compute the sign of each permutation in Exercise 8.3.1.

Exercise 2. For $i_1, i_2, \ldots, i_r \in \{1, 2, \ldots, n\}$, use induction on $r \ge 2$ to prove that $(i_1 i_2 \cdots i_r) = (i_1 i_r)(i_1 i_{r-1}) \cdots (i_1 i_3)(i_1 i_2).$

Exercise 3. Since every permutation in S_n can be written as a product of transpositions, it follows that S_n is generated by the set of all transpositions:

$$S_n = \langle (ij) \mid 1 \le i < j \le n \rangle.$$

There are $\binom{n}{2} = \frac{n(n-1)}{2}$ transpositions total. It turns out this is roughly n/2 times more than we need.

- **a.** Show that S_n is generated by the n-1 transpositions $(12), (13), (14), \ldots, (1n)$. [Suggestion. If $i \neq j$, conjugate (1j) by (1i).]
- **b.** Show that S_n is generated by the n-1 transpositions $(12), (23), (34), \ldots, (n-1n)$. [Suggestion. Starting with j = 2, conjugate (j-1, j) by (1, j-1).]

Exercise 4. Show that $S_n = \langle (12), (123 \cdots n) \rangle$. [Suggestion. Let $\sigma = (123 \cdots n)$ and $\tau = (12)$. Let $\tau_1 = \tau$ and recursively define $\tau_{k+1} = \sigma \tau_k \sigma^{-1}$ for $k \ge 1$. Apply exercises 9.1.3 and part **b** above.]