Name: \qquad

Math 1311
 Test 1
 Fall 2003

1. Consider the function $y=f(x)$, whose graph is sketched in the figure below.

(a) Estimate $f(2), f^{\prime}(2), f(1)$, and $f^{\prime}(1)$.
(b) Where on the interval $-1<a<7$ does $\lim _{x \rightarrow a} f(x)$ fail to exist?
(c) Where on the interval $-1<x<7$ does f fail to be continuous?
(d) Where on the interval $-1<x<7$ does f fail to have a derivative?
(e) Where on the interval $-1<x<7$ is $f^{\prime}(x)=0$?
2. (a) Draw the graph of $f^{\prime}(x)$ for the function $f(x)$ whose graph is shown below.

(b) From the figure below, estimate $g^{\prime}(-1), g^{\prime}(1), g^{\prime}(4)$, and $g^{\prime}(6)$.

3. Find the derivative f^{\prime} if
(a) $f(x)=\sqrt{\frac{t^{2}+1}{t^{2}-1}}$
(b) $f(t)=9 \sqrt[3]{t^{4}}-\frac{3}{\sqrt[3]{t}}$
4. A cubical block of ice is melting in such a way that each edge decreases steadily by 2 in . every hour. At what rate is its volume decreasing when each edge is 10 in . long?
5. Evaluate the given limit if it exists.
(a) $\lim _{x \rightarrow 0} \frac{\tan x}{\sin 2 x}$
(b) $\lim _{x \rightarrow 2^{+}} \frac{16-x^{2}}{\sqrt{16-x^{2}}}$
6. Use the definition of the derivative as a limit to evaluate the slope of the tangent line of the curve $f(x)=x^{2}+1$ at $x=0$.
