Name: \qquad

Math 1311

Test 1
Fall 2004

1. Apply the limit laws to evaluate the following limits or show how the indicated limit does not exist.
(a) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$
(b) $\lim _{x \rightarrow 1^{+}} \frac{1-x}{|1-x|}$
2. Apply the limit laws to evaluate the following limits or show how the indicated limit does not exist.
(a) $\lim _{x \rightarrow 0} \frac{\tan 2 x}{\tan 3 x}$
(b) $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{2 x^{2}}$
3. Apply the definition of the derivative to find $f^{\prime}(x)$ for
(a) $f(x)=3-2 x^{2}$
(b) $f(x)=\frac{1}{3-x}$
4. A population of chipmunks moves into a new region at time $t=0$. At time t (in months), the population numbers

$$
P(t)=100\left[1+(0.3) t+(0.04) t^{2}\right]
$$

(a) How long does it take for this population to double its initial size $P(0)$?
(b) What is the rate of growth of the population when $P=200$?
5. Find the derivative $f^{\prime}(x)$ by applying the differentian rules.
(a) $f(x)=\frac{2 x^{3}-3 x^{2}+4 x-5}{x^{2}}$
(b) $f(x)=\frac{x^{3}-4 x+5}{x^{2}+9}$
6. Match the graph of each function in (a)-(d) with the graph of its derivative in I-IV. Give reasons for your choice.
(a)

(b)

II

(c)

(d)

