Name: \qquad

Math 1311
Test 2
Fall 2004

1. (a) Apply the first derivative test to classify each of the critcal points of the function $f(x)=x^{2} e^{-x / 3}$. If you have a graphics calculator, plot $y=f(x)$ to see whether the appearance of the graph corresponds to your classification of the critical points.
(b) Determine the open intervals on the x-axis on which the function $f(x)=3 x^{4}+4 x^{3}-$ $12 x^{2}$ is increasing as well as those on which it is decreasing. If you have a graphics calculator, plot the graph $y=f(x)$ to see whether it agrees with your result.
2. Find $\frac{d y}{d x}$
(a) $y=e^{-2 x} \sin 3 x$
(b) $x \ln y=x+y$
3. (a) Write an equation of the line tangent to the given curve at $x^{2}-3 x y+2 y^{2}=0$.
(b) Find $\frac{d y}{d x}$ if $y=\left(1+\frac{1}{x}\right)^{x}$
4. An airplane flying horizontally at an altitude of 3 mi and at a speed of $480 \mathrm{mi} / \mathrm{h}$ passes directly above an observer on the ground. How fast is the distance from the observer to the airplane increasing 30 s later?
5. A ladder 41 ft long that was leaning against a vertical wall begins to slip. Its top slides down the wall while its bottom moves along the level ground at a constant speed of $4 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder moving when it is 9 ft above the ground?
