Math 1311
Test 2
Fall 2004
SOLUTIONS

1. (a) (10 points) Apply the first derivative test to classify each of the critcal points of the function $f(x)=x^{2} e^{-x / 3}$. If you have a graphics calculator, plot $y=f(x)$ to see whether the appearance of the graph corresponds to your classification of the critical points.

$$
\begin{aligned}
f^{\prime}(x) & =x^{2}\left(-\frac{1}{3}\right) e^{-\frac{x}{3}}+2 x e^{-\frac{x}{3}} \\
& =x e^{-\frac{x}{3}}\left[-\frac{1}{3} x+2\right]
\end{aligned}
$$

critical points: $\quad f^{\prime}=0 \Rightarrow x_{1}=0, \quad x_{2}=6$
$-\frac{1}{3} x+2=0$

The critical point $x=0$ gives a local minimum, while at $x=6, f$ has a local maximum.
(b) (10 points) Determine the open intervals on the x-axis on which the function $f(x)=$ $3 x^{4}+4 x^{3}-12 x^{2}$ is increasing as well as those on which it is decreasing. If you have a graphics calculator, plot the graph $y=f(x)$ to see whether it agrees with your result.

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}+12 x^{2}-24 x \\
& =12 x\left(x^{2}+x-2\right) \\
& =12 x(x+2)(x-1)
\end{aligned}
$$

critical points are $-2,0,1$

f is increasing on $(-2,0) \cup(1, \infty)$
f is decreasing on $(-\infty,-2) \cup(0,1)$
2. Find $\frac{d y}{d x}$
(a) (10 points) $y=e^{-2 x} \sin 3 x$

$$
\begin{aligned}
y^{\prime} & =e^{-2 x}(\cos 3 x) \cdot 3+(-2) e^{-2 x} \sin 3 x \\
& =3 \cos 3 x e^{-2 x}-2 \sin 3 x e^{-2 x} \\
& =e^{-2 x}[3 \cos 3 x-2 \sin 3 x]
\end{aligned}
$$

(b) (10 points) $x \ln y=x+y$

$$
\begin{aligned}
x \cdot \frac{1}{y} \frac{d y}{d x}+\ln y & =1+\frac{d y}{d x} \\
\frac{d y}{d x}\left[\frac{x}{y}-1\right] & =1-\ln y \\
\frac{d y}{d x} & =\frac{1-\ln y}{\frac{x}{y}-1} \\
& =\frac{y-y \ln y}{x-y}
\end{aligned}
$$

3. (a) (10 points) Write an equation of the line tangent to the given curve at $x^{2}-3 x y+2 y^{2}=$ 0 .

$$
\begin{gathered}
2 x-3 x \frac{d y}{d x}-3 y+4 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}[4 y-3 x]=3 y-2 x \\
\frac{d y}{d x}=\frac{3 y-2 x}{4 y-3 x}
\end{gathered}
$$

at $\left(x_{1}, y_{1}\right)$, the equation of the tangent line is

$$
\begin{aligned}
& y-y_{1}=\frac{3 y_{1}-2 x_{1}}{4 y_{1}-3 x_{1}}\left(x-x_{1}\right) \\
& y=y_{1}+\frac{3 y_{1}-2 x_{1}}{4 y_{1}-3 x}\left(x-x_{1}\right)
\end{aligned}
$$

(b) (10 points) Find $\frac{d y}{d x}$ if $y=\left(1+\frac{1}{x}\right)^{x}$

$$
\begin{aligned}
\ln y & =\ln \left(1+\frac{1}{x}\right)^{x} \\
\ln y & =x \ln \left(1+\frac{1}{x}\right) \\
\frac{1}{y} \frac{d y}{d x} & =x \cdot \frac{1}{1+\frac{1}{x}} \cdot\left(-\frac{1}{x^{2}}\right)+\ln \left(1+\frac{1}{x}\right) \\
& =\frac{-x}{x^{2}+x}+\ln \left(1+\frac{1}{x}\right) \\
\frac{d y}{d x} & =y\left[\frac{-1}{x+1}+\ln \left(1+\frac{1}{x}\right)\right] \\
& =\left(1+\frac{1}{x}\right)^{x}\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right]
\end{aligned}
$$

4. (20 points) An airplane flying horizontally at an altitude of 3 mi and at a speed of 480 mi / h passes directly above an observer on the ground. How fast is the distance from the observer to the airplane increasing 30 s later?

First Method

$$
\begin{aligned}
z^{2} & =x^{2}+9 \\
\text { But } x & =480 t \\
z^{2} & =(480)^{2} t^{2}+9 \\
2 z \frac{d z}{d t} & =2(480)^{2} t \\
\frac{d z}{d t} & =\frac{(480)^{2} t}{z} \\
& =\frac{(480)^{2}}{5} \cdot \frac{1}{120} \\
& =4.96=384 \mathrm{mi} / \mathrm{h}
\end{aligned}
$$

Second Method

$$
\begin{aligned}
& z^{2}=x^{2}+9 \\
& 2 z \frac{d z}{d t}=2 x \frac{d x}{d t} \\
& \frac{d z}{d t}=\frac{x}{z} \frac{d x}{d t} \\
& \text { Afer } 30 \text { seconds, } \quad x=480 \cdot\left(\frac{1}{120}\right) \\
& z=\sqrt{4^{2}+3^{2}}=5 \\
& \frac{d z}{d t}=\frac{4}{5} \cdot 480 \\
& \approx 384 \mathrm{mi} / \mathrm{h}
\end{aligned}
$$

5. (20 points) A ladder 41 ft long that was leaning against a vertical wall begins to slip. Its top slides down the wall while its bottom moves along the level ground at a constant speed of $4 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder moving when it is 9 ft above the ground?

$$
\begin{aligned}
\frac{d x}{d t} & =4 \mathrm{ft} / \mathrm{s} \\
y^{2} & =(41)^{2}-x^{2} \\
2 y \frac{d y}{d t} & =-2 x \frac{d x}{d t} \\
\frac{d y}{d t} & =-\frac{2 x}{2 y} \frac{d x}{d t}
\end{aligned}
$$

$$
\text { If } y=9^{\prime}, \quad \text { then } x=\sqrt{(41)^{2}-(9)^{2}}=40^{\prime}
$$

$$
\text { Hence } \frac{d y}{d t}=-\frac{40}{9} \cdot 4=-\frac{160}{9} \mathrm{ft} / \mathrm{s}
$$

