
Math 1311

Test 2

Fall 2004

SOLUTIONS

1. (a) (10 points) Apply the first derivative test to classify each of the critcal points of the
function f(x) = x2e−x/3. If you have a graphics calculator, plot y = f(x) to see
whether the appearance of the graph corresponds to your classification of the critical
points.
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critical points: f ′ = 0 ⇒ x1 = 0, x2 = 6

−
1

3
x + 2 = 0

−2 −1 1 3 4 5 6 7 8 90 2

0 0

The critical point x = 0 gives a local minimum, while at x = 6, f has a local
maximum.

(b) (10 points) Determine the open intervals on the x-axis on which the function f(x) =
3x4 +4x3 −12x2 is increasing as well as those on which it is decreasing. If you have a
graphics calculator, plot the graph y = f(x) to see whether it agrees with your result.
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f is increasing on (−2, 0) ∪ (1,∞)
f is decreasing on (−∞,−2) ∪ (0, 1)



2. Find
dy

dx

(a) (10 points) y = e−2x sin 3x

y′ = e−2x(cos 3x) · 3 + (−2)e−2x sin 3x

= 3 cos 3xe−2x − 2 sin 3xe−2x

= e−2x[3 cos 3x − 2 sin 3x]

(b) (10 points) x ln y = x + y
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3. (a) (10 points) Write an equation of the line tangent to the given curve at x2−3xy+2y2 =
0.
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at (x1, y1), the equation of the tangent line is
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4. (20 points) An airplane flying horizontally at an altitude of 3 mi and at a speed of 480
mi/h passes directly above an observer on the ground. How fast is the distance from the
observer to the airplane increasing 30 s later?
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First Method

z2 = x2 + 9

But x = 480t
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Second Method

z2 = x2 + 9
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5. (20 points) A ladder 41 ft long that was leaning against a vertical wall begins to slip. Its
top slides down the wall while its bottom moves along the level ground at a constant speed
of 4 ft/s. How fast is the top of the ladder moving when it is 9 ft above the ground?
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