Name: \qquad
Math 1311

Fall 2004

PreTest III

1. (a) Calculate $d y / d x$ and $d^{2} y / d x^{2}$, assuming that y is defined implicitly as a function of x by $\sin ^{2} x+\cos ^{2} y=1$.
(b) Apply the second derivative test to find the local maxima and local minima of $f(x)=$ $x^{3}(x+2)^{2}$ and apply the inflection point test to find all inflection points.
2. Sketch the graph of $f(x)=x^{1 / 3}(6-x)^{2 / 3}$ indicating all critical points and inflection points. Apply the second derivative test at each critical point. Show the correct concave structure and indicate the behavoir of $f(x)$ as $x \rightarrow \pm \infty$.
3. Begin with a calcular-generated graph of the curve $f(x)=\frac{x^{5}-4 x^{2}+1}{2 x^{4}-3 x+2}$. Then use a calculator to locate accurately the vertical asymptotes and the critical and inflection points of $f(x)$. Finally, use a calculator to produce graphs that display the major features of the curve, including any vertical, horizontal, and slant asymptotes.
4. Find the limits of the following.
(a) $\lim _{x \rightarrow \infty} \frac{\ln (\ln x)}{x \ln x}$
(b) $\lim _{x \rightarrow \frac{1}{2}} \frac{2 x-\sin \pi x}{4 x^{2}-1}$
5. (a) For $f(x)=\left(1+\frac{1}{x^{2}}\right)^{x}$
i. First use your own calculator to graph the function $f(x)$ with an x-range sufficient to suggest its behavoir both as $x \rightarrow 0^{+}$and as $x \rightarrow+\infty$.
ii. Then apply l'Hôpital's rule as necessary to verify this suspected behavoir near zero and $+\infty$.
iii. Finally, estimate graphically and/or numerically the maximum value attained by $f(x)$ for $x \geq 0$. If possible, find this maximum value exactly.
(b) Find the limit of $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$.
6. (a) A particle moves along the x-axis with the given acceleration function $a(t)=10-30 t$, initial position $x(0)=5$, and initial velocity $v(0)=-5$. Find the particle's position function $x(t)$.
(b) First calculate (in terms of n) the sum

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

to approximate the area A of the region under $f(x)=9-x^{2}$ above the interval $[0,3]$. Then find A exactly by taking the limit as $n \rightarrow \infty$.

